
1 

  

Configuring Firewalls 
An XML-based Approach to Modelling and Implementing Firewall 
Configurations 

Simon R. Chudley and Ulrich Ultes-Nitsche 
Department of Electronics and Computer Science, University of Southampton, Southampton, 
SO17 1BJ, United Kingdom, e-mail: {src299,uun}@ecs.soton.ac.uk 

Key words: XML-based modelling of a firewall, automatic configuration generation 

Abstract: We present in this paper an approach for modelling the security infrastructure 
of a network using XML. The modelled system can then be validated on the 
XML level. From validated models, configurations of concrete nodes, such as 
firewalls, can be generated automatically. 

1. INTRODUCTION 

Modern networking infrastructures often involve complex interactions 
between participating network nodes and running services. It is often the 
case that systems feature nodes running varying implementation of the same 
service. However, these sub-systems still provide similar abstracted 
functionality to end-users, leading to problems in the configuration and 
management of the overall system. 

This paper proposes a solution to the management of a communications 
infrastructure involving varying nodes and service implementations. 
Considering in particular the service of a firewall, it will introduce the idea 
of an XML-based tool to allow firewall descriptions to be generated and 
manipulated, whilst keeping the specification of the firewall as abstracted as 
possible. The tool is then able to perform a level of translation to compile the 
abstracted description down to implementation-level configuration files. 
These can then be applied directly to the firewall running on a network node. 
In addition, this gives rise to simulate any given firewall configuration prior 
to its implementation to validate its configuration. 



2 Simon R. Chudley and Ulrich Ultes-Nitsche 
 

Taking the firewalls IPFW [5] and IPFilter [3] as an example, 
configuration differs between them, even though the required behaviour is 
the same. The following two configuration scripts both give the same 
functionality, to prevent packets from private networks coming in via their 
public network interface, tun0, as described in RFC 1918 [7]. 

Example IPFilter configuration: 
block in quick on tun0 from 192.168.0.0/16 to any 
block in quick on tun0 from 172.16.0.0/12 to any 
block in quick on tun0 from 10.0.0.0/8 to any 
pass in all 
Example IPFW configuration: 
add deny all from 192.168.0.0/16 to any in recv tun0 
add deny all from 172.16.0.0/12 to any in recv tun0 
add deny all from 10.0.0.0/8 to any in recv tun0 
add pass all from any to any 
These two configurations differ purely on format; hence they could be 

automatically generated from an abstracted description. However, this may 
not always be the case as rule descriptions in IPFW and IPFilter differ also 
in functionality. Both the specification of generic firewall concepts as well 
as handling settings available in one firewall but not another will be 
addressed in this paper. 

2. RELATED WORK 

The Filter Compiler Language project [6] has successfully implemented a 
conversion process from a set description to various firewall configurations. 
The approach taken uses the C pre-processor to execute the conversions. 
This allows the abstracted description to be generated using if statements, 
and variable mappings to be made. An example of this is as follows. 

if ( in ) then { 
set protocol tcp 
if ( from host BAR and opening ) then { 

block . 
} 
if ( from foo and to host bar ) then { 

log body and block . 
} 
if ( to port 2049 ) then { 

log and block . 
} 

pass . 
}  



Configuring Firewalls 3 
 

However, on closer examination, this approach would not be applicable 
to a wide range of services, as it relies on the fact that the configurations are 
rule based. Also, as one aim of this project is to introduce the possibility of 
simulation, such a service description would not be rich enough. 

Another product was identified called the Firewall Builder [4]. This uses 
a similar approach to that proposed by this project, where nodes and other 
network elements are described using XML descriptions, and a GUI editor is 
used to configure the firewall. Such an approach includes all processing 
functionality within the GUI editor, and the XML files purely used as 
storage for the system. This project aims to introduce more advanced 
dynamic configuration operations into the XML definitions themselves. 

In addition, the Firewall-Builder method is still specific to a single 
service, but will be useful as a comparison during the development of the 
firewall service. This project also aims to create an architecture using Java 
and XML, to ensure that it remains as system independent as possible. 

3. THE SYSTEM 

The key component to this system is the repository of network nodes and 
service descriptions. These represent abstracted behaviour of the various 
network elements and provide extended functionality to aid in the overall 
configuration task, e.g. referencing service behaviour defined within an 
external library enables complete descriptions to be built up by reusing 
previously tested and verified constructs. Function calls, in addition, can be 
used to evaluate abstracted service descriptions, in order to automatically 
configure elements of services running on the same or other nodes. 

Taking the firewall example, we aim to initially analyse how the service 
responds to sequences of IP packets of varying forms. Furthering this, the 
ability to track whole sessions across the simulated system is desired, hence 
locating the nodes that may prevent such communication from taking place. 
Common network threats to enterprise security could be emulated within the 
simulation process, establishing the extra firewall rules, for example, that 
may be required to protect against such vulnerabilities.  

Once the desired behaviour of the abstracted service descriptions has 
been achieved via the simulation process, the next task is to translate these 
into configuration files that can be directly applied to applications running 
on nodes. This is a two-stage process, featuring an initial verification step, 
then the translation itself. During verification the aim is to establish whether 
there are any restrictions in the translation process, such as the use of 
features not supported by the chosen end level firewall system. Post 
verification, possibly after making configuration changes due to identified 



4 Simon R. Chudley and Ulrich Ultes-Nitsche 
 
restrictions, the translation process executes. With a rich enough translation 
process, generating rules for two differing firewall implementation will still 
give us the overall behaviour we expected. 

3.1 Overall Structure of System 

One primary aim of this project was to provide an architecture that 
could generically be applied over a wide service base. It should be 
able to transparently support the addition of new translations from the 
abstracted description to implementation level configurations, and 
expand easily to cover new services. 

The most versatile approach to use is a fully object oriented design. A 
major aspect of the entities’ responsibilities is to parse and generate the 
XML to represent themselves, being able to expand variable mappings and 
function calls for example. The idea is to maintain maximum encapsulation 
within the service objects, so that new services can be added by the 
alteration of the minimal number of external objects. 

The diagram on the following page, figure 1, shows the overall system 
structure and processes that occur. Initially, the user’s task is to generate 
descriptions of their network (stage 1), the nodes within it and the services 
they intend to configure. At this stage all descriptions use an abstracted 
syntax, implying that their specification is not tied to a single service 
implementation or architecture.  

At stage 2 within the diagram, the system will maintain an XML 
abstracted description of all elements. Such syntax is used to maintain state; 
hence these descriptions can be stored and recalled from disk. This stage 
forms the central repository of the entire system, with other stages referring 
to it when performing further processing. XML service descriptions will 
contain unresolved external references and function calls, as these are 
evaluated prior to translation/simulation. 

With the desired behaviour of the nodes and services encapsulated within 
abstracted XML descriptions, simulation can be performed to validate 
specifications prior to implementation. Simulation is outside the scope of 
this project, but research is in place to develop such a tool. It is envisioned 
that feedback criteria such as performance and security improvements will 
be fed back to the system editor, allowing the user to incorporate these new 
rules into their overall specifications. 



Configuring Firewalls 5 
 

 

Figure 1. Overview of the System Structure 

Stages 4 and 5 represent the process of creating implementation level 
configuration files from the descriptions now stored in stage 2, hence 
outputting files that can be directly loaded into service applications. Initially 
a level of restriction validation is performed. This takes a set of restriction 
filter rules, describing possible problems in the translation process, and 
reports to the user the location of such restrictions, and the XML elements 
they affect. Such a filter is required as different service solutions provide 
different functionality, and the user should be notified of any undesired 
changes in behaviour. As with simulation, the system editor will be used to 
make design changes in response to located restrictions. 

Translation, in stage 5, aims to convert these descriptions to 
implementation level configuration files. At this stage, the user will be aware 
of the expected behaviour of the to-be implemented services, and have 
knowledge of any included restrictions. Finally, stage 6 represents the 
enterprise description, implying that the combination of all element 
specifications define the overall abstracted behaviour of the entire system. 



6 Simon R. Chudley and Ulrich Ultes-Nitsche 
 
4. SERVICE TRANSLATION PROCESS 

4.1 Specifying the Translation 

Translation is the process of converting the abstracted service description 
into rules and configuration elements that can be directly applied to the 
desired service implementation. The process used to achieve this is XSLT 
using XSL style sheets [8]. For each implementation, such as IPFilter or 
IPFW for firewalls, an XSL sheet is created to perform the transformation to 
the end level rules. An XML file of the same name is used to act as a 
wrapper, providing extra functionality such as detailing limitations of the 
translation, described in the next section. 

The aim is to create a rich enough translation between the abstracted 
description and the final configurations, so that the behaviour directly 
reflects that of the original XML specification. If this could be achieved, a 
node could in fact be swapped with one running a different implementation 
of a given service. Generating the configurations for this new node should 
give the same functionality as before, enabling services to be swapped for 
performance, security and testing reasons. 

4.2 Translation Restriction Calculation 

4.2.1 Overview of Restrictions 

Due to the level of abstraction introduced in describing the behaviour of 
network services, there is commonly a mismatch between the two levels of 
configuration. Features supported by the XML description may translate 
directly into one implementation level service but not another, which implies 
that the overall behaviour of the system will not be as the user expected. 
However, this section describes a process that enables the user to test 
whether there will be any problems in the translation process. In addition it 
reports to the user information on the XML elements of their configuration 
that are restricted, along with textual reasoning. 

Such restrictions can only be identified with knowledge of the specific 
target implementation language, all details of which are stored within the 
translation XSL file itself. Therefore, in addition to the XSL file, each 
translation also contains an XML file describing a set of restrictions of that 
process. 

Restrictions are described as mapping a combination of XML 
configuration elements to some text reason explaining why they are not 
supported. These will be specified by the creator of the translation, and can 



Configuring Firewalls 7 
 
contain multiple rules that an XML element must match to be declared as a 
restriction. 

Restriction calculation is performed using a pre-processing style. The full 
XML output of the service is fed into the pre-processor, specifying which 
translation we desire to test for restrictions. The pre-processor itself is in fact 
a serial processing XML filter, using a set of predefined rules (specified as 
restrictions) to analyse the stream of XML as it passes. Elements that match 
the rules will be returned to the user, along with the text reason for that 
restriction matching. 

The restriction filter provides a rich syntax for matching XML 
configuration elements, with the intent of being able to specify any 
restrictions that may occur. The basic element of a restriction maps from the 
status of an attribute or element to a text reason that is outputted on the 
match of such an attribute. However, combinations of these can be made and 
put into groups forming logical operations such as AND/OR. Further groups 
can be created consisting of other groups and sub-elements allowing 
complex node configurations to be matched. 

4.2.2 Restriction Rule Specification 

The following restriction segment shows matching on the existence of a 
sub-element of XML. This will therefore match any Rules that have one or 
more protocol sub-elements within them. A specific filter syntax is used 
to address restrictions: 

<RestrictionElement   

name="Firewall::Filter:FirewallConstruct/Rule/protocol" 

reason="Matching existence of sub-element"/> 
The following restriction matches src elements of XML that have an 

attribute address defined, with or without a specific value. The lower rule 
matches interface specifications that don’t have an attribute via 
defined. 
<RestrictionElement 
name="Firewall::Filter:FirewallConstruct/Rule/src@address"  
reason="Existence of element attribute"/> 

<RestrictionElement 
name="Firewall::Filter:FirewallConstruct/Rule/interface@!via" 
reason="Absence of element attribute"/>   

There are many more restriction rules that one may specify. Their 
entire presentation would go far beyond the scope of this paper. The 
interested reader is referred to [2]. 



8 Simon R. Chudley and Ulrich Ultes-Nitsche 
 
4.2.3 Pre-processor Output 

The aim of the pre-processing stage is not just to identify the existence of 
possible restrictions, but also to direct the user towards the offending parts of 
their XML service description. To perform this the package can produce 
additional information when restrictions are found to help the user identify 
the location of the problems. 

Following is an example of the matched output produced by the pre-
processor. 

<Restriction line="57" col="18"  
path="/Firewall(1)/FirewallConstruct(1)/Rule(7)"  
reason="Matching some random group of data"> 

   <fw:Rule RuleID="1007" > 
      <fw:action perform="pass"/> 
      <fw:protocol type="other" name="udp"/> 

      <fw:src type="ip" mask="255.255.255.255"  
   address="192.168.2.100"/> 
      <fw:dst type="ip" mask="255.255.255.0"  
   address="192.168.2.0"/> 

      <fw:interface direction="out"/> 
   </fw:Rule> 
</Restriction> 
Initially details on the restriction are outputted, including the line and 

column numbers that the problem XML starts on, and also the exact 
processing path to that element. This path is detailed by including the index 
of the various sub-elements that were encountered to get to the start of that 
element.  

In the above example we can conclude that the matched XML element is 
the seventh Rule, within the first FirewallConstruct all within the 
first Firewall. As the input XML is just a service, there will be no 
additional node definitions on the path. 

In addition to reporting the path, the package also fetches the actual 
source XML input, using the reported path, and outputs this within the 
final restriction report. In effect this can report straight back to the user the 
source of the restriction, allowing them to make the required changes. To aid 
interpreting systems using this package, such as GUIs, the restriction report 
is itself valid XML, hence enabling further processing to be performed. 

If the restriction element or group specifies the outputXML attribute to 
equal “no”, then only the path and restriction reason details will be 
generated with no source XML. 



Configuring Firewalls 9 
 
4.2.4 Complications During Filter Process 

The ability of the filter pre-processor to generate source XML on 
restriction match is itself not trivial. As the filter is processing in a serial 
manner, minimal state is maintained about seen XML, and there is no 
knowledge of future XML. This implies that the filter is unable to remember 
matched XML, hence needs to use the stored path and fetch the source 
XML directly from the object structure. 

However, fetching the source object can cause complications. Initially 
the input to the pre-processor was simply a stream of fully expanded XML 
(implying variables, external constructs and functions have been resolved). It 
is quite possible that the restriction the package is attempting to locate was 
defined within an external construct, or even the output of some function 
call.  

The package will attempt to fetch the exact XML element that matched 
the restriction, which is fine with standard definitions and external 
constructs. Variable mappings at that exact level are also resolved to provide 
the user with as much information as possible. However, function calls 
cannot be inspected by the pre-processor, as they don’t return objects (they 
in fact return another XML stream), so in this situation, the result of the 
whole function is returned to the user. 

4.3 The Translation Process 

The next stage is to generate implementation level configuration files. 
Prior to translation, the fully expanded XML representation of the chosen 
service is generated, involving the resolution of external constructs and 
function calls. This is then fed into an XSL processor, along with the XSL 
style sheet describing the translation for the desired implementation level 
service. The output from this process will be a series of configuration files 
that can be applied directly to the intended service. Once implemented, these 
should have the same behaviour as previous specified in the abstracted XML 
description. 

A translation is described using XSL, mapping combinations of elements 
within the abstracted description to their lower level syntax. Such a process 
should be able to convert all elements within the input to their equivalent at 
this lower level, unless specified otherwise within the restrictions stage. 

The following XML segment is a simple rule with various extra 
options definitions. It matches a TCP packet, travelling from anywhere to 
anywhere, that is a connection set up request (TCP SYN flag set). In 
addition, the packet must not be set as using source routing (either strict of 
loose), used for specifying a fixed route of travel for that packet. 



10 Simon R. Chudley and Ulrich Ultes-Nitsche 
 

<fw:Rule Desc="Test Rule" RuleID="100"> 

   <fw:action perform="pass"/> 

   <fw:protocol type="other" name="tcp"/> 

   <fw:src type="any"/> 

   <fw:dst type="any"/> 

   <fw:options setup="true" established="no" gid="200"> 

      <fw:ipoption spec="lsrr" absent="true"/> 

      <fw:ipoption spec="ssrr" absent="true"/> 

   </fw:options> 

</fw:Rule> 
When using the input XML rule above, processing with the IPFW 

translation, the following rule is produced.  
add 100 pass tcp from any to any setup ipoptions lsrr,ssrr gid 200 

The IPFilter translation produces the following two rules. Note that the 
gid option is not supported by IPFilter, and hence is removed (refer to 
section 5.2.5). Another restriction of IPFilter is that rules must have an 
explicit direction of travel, whereas the abstracted firewall description does 
not enforce this. The translation process can resolve these conflicts 
automatically by generating duplicate rules, creating two rules with different 
IDs and directions of travel. 

@100 pass in quick proto tcp all flags S/AUPRFS with opt lsrr,opt ssrr 

@101 pass out quick proto tcp all flags S/AUPRFS with opt lsrr,opt ssrr 

5. CONCLUSIONS 

We have reported on the firewall specific aspects of a tool development 
project [1,2] to implement network components automatically from XML 
specification of network services. From the XML description of a firewall 
we can configure a particular firewall product automatically using an XML-
to-configuration-file translation described in XSL. Should we decide at some 
stage to change the firewall in our network, we can configure the new 
firewall product from the same XML specification using the XSL-based 
translation. The new firewall will then be guaranteed to operate in exactly 
the same manner as the previous one did. 

We have discussed some aspects of the configuration and simulation of 
firewall using XML specifications. Also we have discussed how to deal with 
feature available in one firewall but not another. Some technical details 
would have gone beyond the scope of this paper: We have not discussed, for 
instance, how the translation process works in details nor have we presented 
any parts of the XSL. The interested reader will find more information at the 
project’s web-page [2]. 



Configuring Firewalls 11 
 

One of the major benefits of the system discussed in this paper is the 
scope for specification-level simulation, and therefore validation, of the 
firewall’s behaviour prior to its concrete implementation and integration 
within a network: We can first convince ourselves of the correct settings in 
respect of a given security policy before we make the firewall operational; 
thus reducing the risk of introducing security holes by testing the firewall in 
the life network environment. The simulation part of the discussed tool is 
currently under development. The core simulation functionality has been 
completed, i.e. simulating the behaviour of a single data packet; more 
elaborate testing functionality will be developed in the next step.  

Until now we have only dealt with the specification and translation of 
stateless firewalls. It will be another topic for future research to integrate 
stateful firewalls into our approach. All latest developments will be 
contained at this projects web-page [2]. 

6. REFERENCES 

[1] S.R. Chudley and U. Ultes-Nitsche. Simulation and Implementation of 
an E-Commerce Communications Infrastructure using XML 
Specifications. In: Proceedings of Business Information Systems 2002 
Conference, Poznan, Poland, 2002.  
http://www.ecs.soton.ac.uk/~src299/xmlnetman/bispaper.pdf 

[2] S.R. Chudley. XML abstracted network management, 2002.  
http://www.slyware.com/projects_xmlnetman.shtml 

[3] E. B. Conoboy and E. Fichtner. IP Filter Based Firewalls HOWTO, 
2002.  
http://www.obfuscation.org/ipf/ipf-howto.html 
http://www.gsp.com/cgi-bin/man.cgi?section=8&topic=ipfw 

[4] V. Kurland and V. Zaliva. Firewall Builder, 2001.  
http://www.fwbuilder.org/ 

[5] D. Lavigne. IPFW firewall configuration details. O'Reilly & Associates 
2001. 
http://www.onlamp.com/pub/a/bsd/2001/06/01/FreeBSD_Basics.html 

[6] D. Reed. Filter language compiler specification 
http://coombs.anu.edu.au/~avalon/flc.html 

[7] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. de Groot, and E. Lear. 
Address allocation for private networks (RFC 1918), 1996 
http://www.faqs.org/rfcs/rfc1918.html 

[8] World Wide Web Consortium. XML Style Sheets (XSL) 
http://www.w3.org/Style/XSL/ 


	INTRODUCTION
	RELATED WORK
	THE SYSTEM
	Overall Structure of System

	SERVICE TRANSLATION PROCESS
	Specifying the Translation
	Translation Restriction Calculation
	Overview of Restrictions
	Restriction Rule Specification
	Pre-processor Output
	Complications During Filter Process

	The Translation Process

	CONCLUSIONS
	REFERENCES

