
TOWARDS A PATTERN-BASED APPROACH
FOR ACHIEVING SEMANTIC INTEGRITY
IN (OBJECT-)RELATIONAL DATABASES

Lance Ingram and Reinhardt Botha
Faculty of Computer Studies,

Port Elizabeth Technikon, Port Elizabeth

{lance,reinhard}@petech.ac.za

Abstract An aspect of information security is the information’s integrity. An

important aspect of integrity is that the information must retain its

appropriate meaning. Semantic integrity rules specify requirements for

ensuring that information maintains its meaning. It is believed that

certain reoccuring themes are present in these semantic integrity rules.

Pattern languages are often used to present solutions to such regularly

occurring problems. This paper will therefore investigate semantic in-

tegrity from a pattern-based perspective. In doing so, the paper will

argue that the implementation of certain semantic integrity rules can

be aided through identifying patterns.

Keywords: Integrity, Semantic Integrity, Patterns

1. INTRODUCTION

An organization’s security policy is expressed through business rules
that dictates the behavior of users. It thus embodies the rules and reg-
ulations of the organization. These business rules express, among other
requirements, the information integrity requirements of the organiza-
tion. In particular, semantic integrity requirements ensure that changes
to organizational information must happen according prespecified busi-
ness rules. In other words, business rules are enforced to prevent the
misuse of the organization’s information.
The importance of information is emphasized by the change in organi-

zations’ methods of performing business. The proliferation of distributed
environments, in particular, emphasized the need to protect information.
The field of information security has, therefore, received increased at-

tention. The growth of the Internet and popularization of e-Commerce

1

2

has fueled these threats [9, 10]. Information security is concerned with
ensuring that information stays confidential and available, while main-
taining a state of integrity.
To be able to maintain the confidentiality, availability and integrity

of information, five information security services should be implemented,
namely: Authentication, Confidentiality, Integrity, Non-Repudiation and
Access Control [2, 4]. These security services all collaborate to accom-
plish a common goal, which is to provide information availability, to
maintain a state of integrity and confidentiality of information within an
organization or institution. These goals have received increased atten-
tion as more and more organizations and institutions rely on technology
to provide a more efficient way of doing business.
Organizations that make use of distributed technologies have the abil-

ity to interact and communicate information more effectively. An impor-
tant element of communication between organizations is the electronic
transfer of information. Although it is important that information is not
tampered with in transit, it is also important that the information cor-
rectly reflects the state of the organization. Therefore information needs
to have integrity. Information integrity has been chosen as this paper’s
primary focus. The next section expounds on integrity as a property of
information.

1.1. INTEGRITY

Information has integrity when it reflects the real-world [2]. Therefore,
information should be complete (it should be the whole truth) and valid
(nothing but the whole truth) [7]. To achieve integrity three different
types of measures must be considered [6]:

Operational integrity measures deal with the synchronization of
concurrent access to the data;

Physical integrity measures protect against the loss of data from
media failures;

Semantic integrity measures ensure that the data reflects the true
state of affairs.

The parameters in which a business operates is defined through the
business rules. Business rules thus dictate what may and may not hap-
pen in the business. Semantic integrity is achieved when data complies
with appropriate business rules.
According to Leymann and Roller [6] business rules can be categorized

as being static, transitional and dynamic.

3

Static business rules ensure the validity of each database state. For
example, the total on an invoice must be equal to the sum of all
the individual orders on that invoice.

Transitional business rules ensure the validity of transition between
two consecutive database states. For example, in financial account-
ing a double entry system is used. In such system for each debit
there needs to be a credit. Another financial oriented example, is
that you can only remove items from an order. Instead an explicit
negation must be added.

Dynamic business rules ensure the validity of corresponding tran-
sitions by refering to more than two database states. Each corre-
sponding transition will be validated between the database during
run-time of a certain event. For example, you cannot approve an
order if the invoice for that specific order wasn’t received yet.

When interpreted in the context of an information system, a business
rule such as “an order may not be edited after it has been approved”
aims to ensure that the system reflects the state of the physical “world”
it represents, in that it restricts the actions that may be performed at
a specific time. If a user could perform an edit on a specific order af-
ter it has been approved, semantic integrity would not be maintained
since the business rule “an order may not be edited after it has been ap-
proved” would be violated. In essence, semantic integrity is maintained
if information has a consistent and accurate meaning in the business.
Business rules are, therefore, enforced to prevent the misrepresenta-

tion of the organization’s information. The proposed study is principally
motivated by the realization that the information of organizations should
reflect the true state of affairs, i.e. have semantic integrity.

2. INTEGRITY MECHANISMS IN
(OBJECT-)RELATIONAL DATABASES

Current commercial database technology provides a variety of mech-
anisms to enforce semantic integrity constraints. The SQL:1999 stan-
dard [5] defines a language to interact with (object-)relational databases.
Commercial products will aim to meet the standard requirements. The
SQL:1999 standard has many features which can assist with semantic
integrity. The following section will discuss the definition of both declar-
ative and procedural integrity constraints that SQL:1999 supports.

4

2.1. DECLARATIVE DEFINITION OF
INTEGRITY CONSTRAINTS

SQL:1999 allows several language constructs that can be used to
declaratively specify integrity constraints. Integrity constraints may be
checked after each statement or only at the end of a transaction. These
declaratively integrity constraints allow database application to enforce
integrity upon each request. The constraints such as check defines an
integrity constraint based on a search condition, while not null prevents
a column from taking a null value. However not all constraints can be
stated declaratively. Therefore certain procedural mechanisms exist.

2.2. PROCEDURAL DEFINITION OF
INTEGRITY CONSTRAINTS BY
TRIGGERS

Commercial databases implement the procedural definition of integrity
constraints through the use of triggers. Triggers is based on the ECA
rule in active databases [8]. Triggers fire on databases event, typically
an insert, update or delete, occur. The condition is evaluated and the
appropriate action is performed [1].
Although it can be seen that many mechanisms exist in commercial

(object-)relational database, developers sometimes also have difficulty
in choosing an appropriate mechanism. This paper suggest that certain
patterns in business rules can be identified, which would aid developers
with choosing an appropriate implementation mechanism.
To demonstrate this point we look at a specific pattern for a specific

business rule and discuss the various implementation strategies associ-
ated with the pattern.

3. SCENARIO

A pattern is a regular occurring form, that documents the solution to
a common problem [3]. Within information systems the requirement for
something to exist before we could do the next step is quite common.
Often that requirement is necessary to ensure that the information have
the appropriate meaning. For example, it would not make sense to store
detail of an order which does not exist, nor would it be sensible to order
from suppliers which does not supply specific products.
We can therefore identify the “Pre-existing values” pattern as below.

Note that the pattern has several possible implementations.
Name: “Pre-existing values”

5

Requirements: That certain values may only be used if they exist in
another place.
Implementation of the pattern: There are numerous ways to solve
the problem that relates to the chosen pattern namely:

Primary-foreign keys

Triggers

Encapsulation

Each of these implementation options will now be discussed in more
detail.

4. IMPLEMENTATION OF “PRE-EXISTING
VALUES” PATTERN

The “pre-existing values” pattern will be evaluated and discussed in
each of the following sections. Each section will consist of a description
that will explain the concept of each solution. It will also consist of an
example business rule. ORACLE code shows an implementation of the
proposed solution to the “pre-existing values” pattern. Each solution
will be commented on to indicate certain requirements or downfalls.

4.1. PRIMARY-FOREIGN KEYS

Description In (object-)relational databases primary and foreign keys
are used to ensure that integrity is maintained. By making use of pri-
mary and foreign keys, a relationship between two entities is created. If
one entity consist of information that does not exist in the other entity
integrity would have been violated.
Example The Order table contain the SupplierNo which is related
to the Supplier table SupplierNo. The Supplier need to be a valid
Supplier for an Order to be approved. When a relationship between two
entities is established integrity is enforced by the relationships between
the entities.
Solution

CREATE TABLE ORDER

(OrderNo NUMBER(5,0) NOT NULL,

SupplierNo NUMBER(5,0),

CONSTRAINT Order_pk PRIMARY KEY (OrderNo),

CONSTRAINT Supplier_fk FOREIGN KEY (SupplierNo) REFERENCES SUPPLIER(SupplierNo));

CREATE TABLE SUPPLIER

(SupplierNo NUMBER(5,0) NOT NULL,

CONSTRAINT Supplier_pk PRIMARY KEY(SupplierNo));

6

Comments Normalization often causes a single object in the real world
to be represented by multiple entities in the database. For example, the
Order and Orderline table both contributes to the real world “invoice”
object. Normalization has well-known advantages as far as maintenance
(and therefore integrity) is concerned. However, primary-foreign key
constructs only is applicable where only two tables are involved.

4.2. TRIGGERS

Description Certain integrity requirements require synchronization of
data between multiple tables. The use of triggers allows the (object-)re-
lational database to do synchronizations between multiple tables.

ORDER

PK
 OrderNo

FK2
 SupplierNo

ORDERLINE

PK
 LineNo

PK,FK2
 OrderNo

FK3
 PartNo

SUPP_PART

PK,FK2
 SupplierNo

PK,FK1
 PartNo

SUPPLIER

PK
 SupplierNo

PART

PK
 PartNo

Figure 1 Implementation of Trigger

Example Figure 1 illustrates the requirement that a product can only
be ordered from a supplier who actually supplies that product. As such
the combination of SupplierNo in the Order table and the correspond-
ing PartNo in the Orderline table must exist as a combination in the
Supp part table.

7

Solution

CREATE OR REPLACE TRIGGER ins_order_line

BEFORE INSERT ON ORDER_LINE

FOR EACH ROW

BEGIN

SELECT ORDER.OrderNo

into v_order

FROM

ORDER,

SUPP_PART

WHERE ORDER.Sno = SUPP_PART.Sno

AND :new.Pno = SUPP_PART.Pno

AND ORDER.Ono = :new.Ono;

EXCEPTION

WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR(-20010,’Violation of rules’);

END;

/

Comments Triggers can only be based upon tables and react on events
such as insert, update and delete. These are however the only events
that may cause integrity problems. An aspect to consider is that the
trigger may under certain circumstances perform corrective action if an
event violates integrity.
Triggers have the further disadvantage that they are relatively ex-

pensive and as such should not be used when another implementation
mechanism (such as primary-foreign keys) are available.
It is also interesting to note that many of the situations where triggers

are required actually originate from the process of normalization. In par-
ticular this is the case when a physical object is represented in multiple
tables, but the combination of values between the various tables are still
of importance.

4.3. ENCAPSULATION

Description In Object-Orientation the child object will inherit features
and functionality from the base object. Thus allowing the child object to
act as the base object, this also indicates that the child do not require to
reinvent the wheel, but access the features that already exist within base
class. This allows reusability of features and functionality that already
exist.
Example The Order table can be created as an object that allows to
SupplierNo in the Order table reference Supplier object that already
exist. The Supplier table can be created as a object that makes the

8

Supplier and feature of the Supplier object that can be reference by the
child object in the Order table.
Solution

CREATE OR REPLACE TYPE SUPPLIER_T AS OBJECT

(SupplierNo NUMBER(5,0) NOT NULL

//and other fields

CONSTRAINT Supplier_pk PRIMARY KEY(SupplierNo));

CREATE OR REPLACE TYPE ORDER_T AS OBJECT

(OrderNo NUMBER(5,0) NOT NULL,

SupplierNo REF SUPPLIER_T

//and other fields

CONSTRAINT Order_pk PRIMARY KEY(OrderNo));

Comments There is an increase in complexity for developers due to the
fact that they need to change their mindset to a more object-orientated
approach. The fact that object-orientation allows the reusability of ta-
ble, function and triggers is by itself a great advancement in databases.
The encapsulation of objects in other objects intuitively model the rela-
tionship between those objects. Techniques such as information hiding
also adds additional integrity features.

5. CONCLUSION

In this paper semantic integrity rules were evaluated to identify a reg-
ularly occurring pattern. The pattern that was identified were discussed
to indicate the various implementation solutions available for the specific
pattern. In doing so the paper has illustrated that the implementation
of certain semantic integrity rules can be aided through identifying pat-
terns.
It is foreseen that complex business rules could be built from using

these reoccuring patterns in different combinations. We will therefore
expand on the ideas presented in this paper through the identification
of additional patterns for semantic integrity requirements. Each pattern
will be studied in detail and implemented in a database such as Mi-
crosoft SQL Server and Oracle. In this process metrics will be created
and arguments for choosing the appropriate implementation option for
a database pattern. The combination of different patterns to construct
more complex business rules will also receive attention.

References

[1] Reinhardt Botha. Towards semantic integrity in relational
databases. In IFIP TCII Eighteenth Annual Working Conference

on Information Security, Cairo, Egypt, May 2002.

9

[2] G. Bruce and R. Dempsey. Security in Distributed Computing. Pren-
tice Hall, 1997.

[3] Ward Cunningham. The check pattern language of information
integrity. In James O.Coplien and Douglas C. Schmidt, editors,
Pattern Languages of Programs design. Addison Wesley, 1995.

[4] ISO 7498-2: Information Processing Systems — Open System In-
terconnection — Basic Reference Model – Part 2: Security Archi-
tecture, 1989.

[5] ANSI/ISO/IEC 7075-2:99 ISO International Standard: Database
Language SQL – Part 2: Foundation (SQL/Foundation), September
1999.

[6] F. Leymann and D. Roller. Production Workflow Concepts and

Techniques. Prentice Hall, 2000.

[7] Amihai Motro. Integrity = validity + completeness. ACM Trans-

actions on Database Systems, 14(4):480–502, December 1989.

[8] N. Paton and O. Diaz. Active database systems. ACM Computing

Survey, 31(1):63 – 98, March 1999.

[9] R. Von Solms. Information security management (1): why informa-
tion security is so important. Information Management and Com-

puter Security, 7(1):174 – 177, April 1998.

[10] L. Weinstein and P. Neumann. Inside risks: Internet risks. Com-
munication of ACM, 43(5):144, March 2000.

