
ENCODING AND ISOLATING
COMPUTER SECURITY

CONCERNS

Marc Welz and Andrew Hutchison
Data Network Architectures Laboratory

Department of Computer Science

University of Cape Town

Rondebosch

7701

{mwelz,hutch}@cs.uct.ac.za

Abstract
We examine several different approaches which may be used to

describe the security related activity of a computer system. Such
descriptions are a first step toward managing these issues, as they
facilitate the task of extracting security responsibilities and transfer-
ring them (to the extent possible) to external, specialised security
subsystems. The framework structuring this analysis takes the form
of a taxonomy of security mechanism, with particular emphasis on a
particular attribute: The level of abstraction in terms of which the
security events are generated and the policies specified. We propose
three major categories for this attribute: Infrastructure, application
and security abstractions. Infrastructure abstractions define events
in terms of the components used to implement the monitored system
(such as the system calls issued by a guarded web server), applica-
tion abstractions define events in terms of the domain entities intro-
duced by the monitored system (eg HTTP requests fielded by the web
server), while security abstractions map system activity to domain
independent concepts (for example, HTTP requests can be mapped
to subject-object-access triples). With the aid of this taxonomy we
examine some of the tradeoffs which are made by different approaches
used to encode security activity.

Keywords: Security Taxonomy, Security Abstraction

1



ENCODING AND ISOLATING COMPUTER
SECURITY CONCERNS

1 Background

As part of an investigation into how security concerns may be isolated from
the rest of a computer system, we have generated a taxonomy of security
measures. The taxonomy classifies systems using five attributes:

. 1 Time : When does the measure operate ?

. 2 Location : Where is the security measure placed ?

. 3 Human Involvement : Who needs to support the security measure ?

. 4 Abstraction Level : What events does the security measure analyse ?

. 5 Analysis Complexity : How much time and space is needed to per-
form the analysis ?

This paper examines the fourth attribute, level of abstraction, in greater
detail. This attribute seeks to describe the representations which can be used
to encode security related activity or events.

2 Abstraction Categories

This section describes three categories which may be used to classify different
security event representations. The intention is not to establish a detailed
framework capable of defining every possible abstraction uniquely; instead
the objective is to identify a general quality of the entities used to define
security events.

The basis for the categories is the observation that a computer system
can be divided into two parts — an infrastructure (which is used to construct
or service the component under consideration) and the component of interest
(here referred to as the application, the client of the infrastructure), while
security concerns (if feasible to externalised) take a third form, as shown in
Figure 1. The three security abstraction categories derived from this view
are listed below:

• Infrastructure abstractions describe security events in terms of elements
which are used to construct or service the guarded application. For ex-
ample, if the guarded application is hosted by a conventional operating

2



Infrastructure

Application Domain Security 

Figure 1: Abstraction Categories

system, then infrastructure security events could be defined in terms
of the files opened or the system calls issued by the application.

• Application or domain abstractions are introduced by the developer
of the system under consideration to describe the domain in which
the system operates. For example, a word processor might operate on
paragraphs and chapters.

• Security abstractions are independent of a particular application or
infrastructure, but are introduced to capture a generic security issue.
For example, a security class of a multi-level access control system
labelled confidential is a construct which could include both a word
processor paragraph or an operating system file.

3 Category Assignments

This section assigns several types of security measures or mechanisms to the
above three categories. These will subsequently be used to illustrate the
tradeoffs which are imposed by the respective category.

3.1 Infrastructure Abstractions

Network firewalls and less sophisticated network intrusion detection systems
are security mechanisms which operate on infrastructure abstractions. Typ-
ically each packet is considered a security event, and policies are specified
as a list of rules stating which hosts may send packets to which ports. Host
addresses, ports and packets are all abstractions introduced by the infras-
tructure which are used by applications to implement higher level services.

3



Figure 2: A Security Setting of the Mozilla Web Browser

Other, operating system related, examples are the likes of Medusa DS9 [14],
the Wrapper Support System (WSS) [3] and Linux Security Module (LSM)
Interface [13]) , which define policies in terms of kernel operations.

3.2 Application Abstractions

Application abstractions generate security activity (and define policy) in
terms of the domain in which the application operates. An example is shown
in Figure 2, which illustrates how a user may adjust the cookie acceptance
policy of a web browser. Other application domain policies may be encoded
as mail user agent filtering rules or chat client buddy lists.

3.3 Security Abstractions

Security abstractions differ from the above two categories that they require
an effort on the part of the infrastructure or application developer — it is
necessary to map native events to a model or framework at least partially
independent of the particular system. A number of these mappings are de-
scribed below:

• The conventional access control model [5] (subjects having a set of ac-
cess rights to objects) can be considered a security abstraction which
maps security related activity of a particular system to a set of subject-
object-access triples. Usually this mapping is only partial, as the mean-
ing of these values remains dependent on a particular system (an op-
erating system may operate on files, a database on tables, etc). How-
ever, when a security labelling scheme (either in the form of security
compartments or levels) is used, an access control abstraction can be
separated from the application or infrastructure.

• Intrusion detection systems employing machine learning techniques to
discover anomalies (an approach sufficiently general to be applied to

4



both applications and infrastructure activity) tend to require particu-
larly information dense representations of security relevant information
for optimal operation. Mapping system activity to such a representa-
tion usually involves feature selection (see [7] for an examination of
this task in a security context) and encoding efforts (an example of a
mapping from a TCP connection attempt to a compact 49 bit string is
described in [4]).

• The classical syslog [9] interface is primarily used to report unstruc-
tured infrastructure or application-specific events. However it also in-
cludes an eight-valued severity field (ranging from routine debug and in-
formational messages to high-importance alerts and emergencies) which
makes it possible to prioritise events without knowledge of the domain
in which the reporting system operates. Similar priority, importance
or risk values are encountered in a number of other systems: For exam-
ple, the snort IDS labels suspected intrusions using an one of eleven
priorities.

• The Distributed Auditing Standard (XDAS) [12] defines 9 default event
classes which in total contain 45 generic events to which the activity
of a given system can be mapped. Event classes relate to tasks such
as the administration and use of accounts, communications channels,
services and applications. Within each of the event classes, activity
is generally reported in terms of the creation, access, modification or
destruction of an entity.

• Although the drafts of the IETF Intrusion Detection Working Group [2]
as well as the Logging Data Map (LDM) of Ranum and Robertson [11]
also operate on domain abstractions, primarily network related, it is
possible to identify a security abstraction (not unrelated to the subject-
object-access model) which defines activity in terms of a source (possi-
ble attacker) and a target (potential victim). In the case of the LDM,
10 of the 23 tags are used to describe source and target entities (ex-
ample tags are SRCPID, SRCPATH, SRCDEV and SRCUSER), while others
are used to label information such as event priority, time and error
condition. Similarly alerts defined using the proposed IETF Intrusion
Detection Message Exchange Format consist primarily of source and
target elements, which may be nodes, users, processes or services.

5



4 Analysis

This section examines how a number of tradeoffs are distributed over the
different categories, and how these influence the other four taxonomy at-
tributes.

Arguably the oldest and best developed abstractions are those developed
as part of classical operating system access controls. Calls for the isolation of
security concerns can, for example, be found in the three decade old Ander-
son Report [1] which argues for the construction of a security kernel, where
“the objective of a security kernel design is to integrate in one part of an
operating system all security related functions”. While not formally verified
or completely minimal, most modern operating system do provide an ap-
proximation of a security kernel. It enforces policy by consulting access or
capability lists to establish if a particular subject may perform the requested
operation on the given object.

Despite the existence of such infrastructure security kernels, failures in
other parts of a computer system, particularly applications, continue to com-
promise computer security. In part this can be attributed to deficiencies in
the execution of the implementation and administration of the security ker-
nel concept — a security kernel may be flawed or too diffuse, subjects may
be poorly authenticated, and applications may execute with greater than
necessary privilege [8].

However, we contend that the limitation does not only lie in the im-
plementation of the reference monitor design — we argue that certain ap-
plication classes are inherently trusted and thus difficult to protect at the
infrastructure level. In this context we define a trusted applications to be
one which possess some privilege which is not accessible to the parties inter-
acting with it. This assertion can be illustrated using an example: Consider a
trusted medical database application (and its infrastructure in the form of a
conventional operating system) which permits a certain researcher to retrieve
a particular disease incidence rate for a population, but not the disease status
of an individual. The disease incidence rate is a domain specific abstraction
introduced by the database and has its own security requirements.

Controlling access to such domain abstractions at the infrastructure level
is nontrivial, as the mapping from infrastructure resources to abstractions
can be arbitrarily complex, requiring either the duplication or inclusion of
substantial application functionality in the policy enforcement system. For
example, in the the above database the calculation of the population average
may generate the same file system reads as a listing of all individuals —
distinguishing between the two would require that the policy statements
include the database logic.

6



The above example is related to the confinement problem [6] which also
supports the view that infrastructure controls are necessary, but not sufficient
to secure a conventional computer system. If conventional access controls are
taken to occupy the lower right quadrant of Figure 1 (an security abstraction
implemented by the infrastructure), then the medical database system illus-
trates that the abstractions of the lower right quadrant may be insufficient to
track the activity of the upper layer — the process of constructing a security
abstraction discards some information (present in the left lower quadrant)
which may be used by the application (upper left quadrant) to construct
entities with security implications (upper right quadrant).

In the case of the medical database, the host operating system security
kernel may be invoked on opening a database volume or the connection of a
client, but may not be provided with the content of network or disk buffers
necessary to distinguish between a query which retrieves the list of diseased
users instead of the population average. Even if such information were made
available, the analysis subsystems of contemporary operating system refer-
ence monitors (designed to perform little more than table lookups) would
lack the facilities to decode these queries.

It can be argued that this limitation has lead to the introduction of other
security subsystems which are intended to protect applications, but operate
more directly on infrastructure abstractions. Representatives include intru-
sion detection systems and operating system security extensions described
previously. For example, a network intrusion detection system may be used
to protect a server application by monitoring the packets sent and received.
In order to follow application protocol exchanges, the analysis subsystem
processing these packets may have to be substantially more complex than
simple table lookup of a conventional reference monitor. The tracking of
application logic and state by the security analysis subsystem has to be of
high fidelity, as inconsistencies between it and the monitored application may
provide opportunities for desynchronisation attacks — these disable or blind
the monitor. A substantial number of desynchronisation possibilities in an
IP environment have been described by Ptacek et al [10] and while a number
of these have been remediated in newer network IDS implementations, it has
been possible to identify further possibilities — for example, we found that
TCP urgent data can be used to mask some attack payloads.

These limitations support the view that infrastructure security measures
are poorly suited to the protection of trusted applications — they are ei-
ther vulnerable to desynchronisation or duplicate application functionality
to such an extent that it may be possible to do away with large parts of the
application.

It is this weakness which makes it necessary to consider security mech-

7



anisms which involve the developer of a trusted application. From the per-
spective of the application developer, these measures are no longer non-
bypassible, but have the advantage of being less vulnerable to desynchronisa-
tion. Consider the example of a web browser — a desynchronisation attempt
which fragments and otherwise reformats an HTTP transaction may succeed
in evading an infrastructure level security mechanism which blocks undesired
content, but less effective if the web browser itself is configured to reject this
(as shown in Figure 2).

A complication of this approach is that the security responsibilities are
distributed among applications and thus no longer concentrated at a secu-
rity kernel. Given that the various trusted applications differ in design and
employ disparate abstractions, policy formulation is more expensive. In this
context security abstractions may be particularly interesting, as they could
be used to map the diverse application abstractions (top left quadrant of Fig-
ure 1) to general security concerns (top right quadrant), making it possible to
delegate analysis functions to a general purpose system, while still depending
on the application developer to perform the mapping and so defend against
desynchronisation attempts.

Although the same security abstractions employed by infrastructure sys-
tems can be used at the application level, it may be useful to develop al-
ternatives to take account of the fact that the policies may be intended to
control the internal behaviour of the application, rather than the hosted enti-
ties as would be the case in an infrastructure system. This can be illustrated
by comparing an operating system security kernel with the likes of a web
browser — the primary purpose of the security kernel is to control the appli-
cations it hosts, not to defend against flaws internal to the security kernel,
particularly given the these tend to be relatively rare as the security kernel
tends to be small and well validated. This contrasts with a web browser,
which is a larger, less well tested system — in such a case it would be useful
to report activity in terms of security abstractions which may be useful to
detect failures internal to the system.

For this purpose we propose (and have implemented a system which,
amongst other abstractions, exercises it) a security abstraction which assigns
application modules functionality labels (analogous to subject clearances and
object classifications of a military multi-level security system). This abstrac-
tion can be used to induce a requirement and dependency hierarchy on the
application components, which in turn can be used by an external analysis
subsystem to implement an orderly contraction of application functionality,
whether to enforce explicit policy or in response to anomalous activity. We
suggest that the construction of further abstractions designed to capture ap-
plication concerns may provide an interesting line of inquiry.

8



5 Synopsis

This paper has reviewed several forms of representing security related in-
formation. In the context of the five taxonomy attributes given earlier, the
analysis can be summarised as a set of statement describing the tradeoffs
made by the various abstractions:

• Classical security abstractions used by security systems located (. 2)
in the infrastructure are desirable, but do not provide sufficient in-
formation to analyse trusted applications, furthermore the associated
analysis systems lack the computational resources (. 5) to perform this
task even if this information were provided.

• Security systems operating directly on infrastructure abstractions may
have access to sufficient information and may possess the needed com-
putational resources (. 5) to perform the analysis. However tracking
of a trusted application at this level is expensive, as it may require the
re-implementation of significant application functions in the policy en-
forcement subsystem — a duplication of application programmer effort
by administrators (. 3).

• A strategy of involving the application developer (. 3) in the security
effort locates (. 2) part of the security subsystem in the application and,
since it depends on the integrity of the guarded application, requires
that the measure act before (. 1) an attack compromises the security
system.

• In order to reduce the administrative burden (. 3) imposed by different
application domain abstractions, it is interesting to develop security
abstractions which can be used by application providers to describe
the security characteristics in a domain independent form.

References

[1] J. P. Anderson. Computer security technology planning study. Technical
report, USAF Electronic Systems Division, October 1972.

[2] M. Erlinger, S. Staniford-Chen, et al. IETF intrusion detection working
group. http://www.ietf.org/html.charters/idwg-charter.html, 1999.

[3] T. Fraser, L. Badger, and M. Feldman. Hardening COTS software with
generic software wrappers. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 2–16, May 1999.

9



[4] S. A. Hofmeyr. An Immunological Model of Distributed Detection and
Its Application to Computer Security. PhD thesis, University of New
Mexico, May 1999.

[5] B. W. Lampson. Protection. In 5th Princeton Conference on Informa-
tion Sciences and Systems, pages 437–443, March 1971.

[6] B. W. Lampson. A note on the confinement problem. Communications
of the ACM, 16(10):613–615, 1973.

[7] W. Lee, S. J. Stolfo, and K. Mok. Mining audit data to build intrusion
detection models. In International Conference on Knowledge Discovery
and Data Mining, September 1998.

[8] S. B. Lipner. Security criteria, evaluation and the international environ-
ment. Forum on Risks to the Public in Computers and Related Systems,
12(46), October 1991.

[9] C. Lonvick. RFC 3164 the BSD syslog protocol, August 2001.

[10] T. H. Ptacek and T. N. Newsham. Insertion, evasion and denial of
service: Eluding network intrusion detection. Technical report, Secure
Networks, 1998.

[11] M. J. Ranum and P. D. Robertson. Logging data attribute map.
http://www.ranum.com/logging/logging-data-map.html, August 2002.

[12] The Open Group. Distributed audit service (XDAS) base.
http://www.opengroup.org/pubs/, 1997.

[13] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman.
Linux security module framework. In Ottawa Linux Symposium, 2002.

[14] M. Zelem, M. Pikula, and M. Ockajak. Medusa DS9 security system.
http://medusa.fornax.sk/, 1999.

10


