

Web Application Hacking

SensePost Research

SensePost Information Security

research@sensepost.com

haroon@sensepost.com

+27 (0)12 667 4737

+27 (0)83 786 6637

P.O.Box 10692

Centurion

0046

South Africa

ABSTRACT

The security world has spent the last decade focusing on protecting networks from traditional

security attack vectors. Network Firewalls and related filtering

solutions today have reached levels sophisticated enough to allow

drag and drop enforcement of security policies. The goal posts

however have shifted once more with the wide spread deployment of

custom and COTS web based applications.

These web applications can not be protected by the solutions that security professionals have

become accustomed to, and in many cases need to be re-written from

the ground up with security in mind. This talk will highlight some of

the attack vectors in this new security playground and discuss

potential solutions and work arounds.

Web Application Hacking

1. Introduction

The information security world has spent the bulk of its lifespan developing and updating

firewalling technologies, to restrict access to critical servers and

networks. The last 2 years however has seen a dramatic increase in

the deployment of web-based applications. This application space

has therefore become the new playground for attackers providing

access to potentially sensitive information and possible inroads into

internal private networks.

A number of explanations exist for the glut of trivially exploitable web applications that exist on the

Internet today. One of the most plausible is that developing web

enabled applications is far simpler today than application

development ever has been. Current generation development

environments allow an end user to publish information directly from

the company database to a web site with a few mouse-clicks and

(maybe) a few lines of cut and paste code. This has resulted in a

large supply of “developers” with little or no understanding of secure

coding practices.

In addition to this we can add the problem we refer to as “following the blind”. The Internet has

made the dissemination of information incredibly easy. While it took

tremendous effort to publish ones work (in the past) it is nowadays

as simple as FTP’ing your document to any one of the countless free

hosting providers that exist. With all the benefit that comes with this

free-speech nirvana we now have the hidden downside of lost

reliability. Using a code snippet from Kerrigan and Ritchie's “The C

Programming Language” is not quite the same as a code snippet

from http://www.geocities.com/~s00perK00l. This problem is

compounded infinitely when even “trusted” sources of information

are misleading (seen in section on SQL Query injection).

The rest of this paper will highlight some of the vectors used by attackers when attacking web

applications and will discuss briefly the counter-measures available

to developers.

2.1. Anatomy of a web application
A typical web application resembles the diagram below. The individual components illustrated may

reside on the same machine or more often than not reside on multiple

machines that exist at distinct locations within the company network.

Figure 1. Typical architecture for a Web application

Once the decision has been made to permit HTTP access to the web-server, very little can be done

to prevent an attacker from attempting to “ hack” the web application

that resides on it. Web application attacks are conducted totally over

HTTP and are seen as acceptable traffic to the firewall / filter. The

introduction of SSLv2 does nothing to inhibit the attacks, and gives

the attacker the added comfort of privacy on the wire.

2. Attack Vectors

For the purposes of this paper the following vectors of attack will be discussed.

• Information Gathering;

• Directory Traversal;

• Command Execution;

• Parameter Passing;

• Cookie Manipulation;

• State Tracking.

2.1. Information gathering
Information gathering is often overlooked as an attack vector but plagues most of the custom

written web applications. The problem is often overlooked because

one assumes that its implications are small. Web application hacking

however is often achieved in little pieces as opposed to the instant

root achieved when attacking conventional services. Information

gathering is normally accomplished due a number of possible

developer errors:

• Comments in client side code;

• Verbose error messages;

• Confusion over client side vs. Server side code.

HTML as its name suggests is merely a mark-up language. Developers often embed comments in

client side code that is of invaluable use to potential attackers. Even

innocuous details like the authors name become potentially harmful,

providing attackers with a possible username for the system. This is

a trivial matter to rectify and normally requires just awareness on the

part of web page designers.

The second error that leads very often to information leakage occurs due to error messages within

the application. Potential attackers often feed known “ unfriendly”

characters into an application in an attempt to force the application

to fail. Many systems return verbose error messages that reveal

information that could greatly assist a potential attacker. Verbose

error messages provide application developers with an effective

means of debugging applications but should be replaced with more

generic messages when these systems are rolled into production.

Applications developed in PHP have long been a target of such

attacks since the default configuration returned verbose error

messages to the end user. The following web site uses PHP to create

an online photo catalogue. A neatly designed front page allows the

user to select the album and the picture number that the site visitor

wishes to view.

Figure 2. A PHP Photo Album

Entering an erroneous value for either one of these variables, returns a page as follows.

Figure 3. PHP Photo Album failing “un-gracefully”

The attacker has now been treated to the real path of the web servers document root

(/usr/local/vwweb/XXXX/), and has been introduced to a few new

directories to peruse (/imgview/inc). In the case of the above

application, the /inc directory was further found to be indexable,

allowing us to peruse, and download scripts we were never intended

to see (these sorts of scripts often contain connection strings and

credentials that can be harvested).

The 3rd error often made is the confusion between server and client side code. Developers using

certain technologies often assume that their code is not visible to the

end user and are often mistaken in this regard. JavaScript and Java

often lull developers into this false sense of security. JavaScript runs

in the context of the user’s browser, and users are therefore able to

select whether to run, ignore or examine the script. Even compiled

Java applets, are often mistaken for a server side technology. The

applet may indeed reside on the server, but is downloaded and run

on the user’s machine. The user is once more able to simply

download the applet to his machine, where freeware (and easily

available) Java Decompilers are able to return the compiled Java

bytecode to source code at the click of a button (Once more, we find

numerous applets containing JDBC connection strings, usernames

and passwords within the decompiled code)

2.2. Directory traversal
Directory traversal refers simply to the ability to cross from one directory to another. A user who

chooses to run a file by typing /etc/init.d/apache while still being in

his own home directory /home/users/mh is effectively doing

directory traversal. This fairly innocuous almost mundane activity

becomes a security risk when web applications permit directory

traversal without being aware of the repercussions. A typical

example of this can be found in a well known web based

mathematical imaging program. This program generates images

(graphs) based on user input and saves these images using random

names to a directory on the server. A URL to the pictures path is

then handed to the user. What follows is an example of such a URL :

http://www.sensepost.com/webApplication/SENSEAPP?SENSEStor

eID=SP88808199_324246989&SPStoreType=image/gif

The SENSEAPP application always expected the passed parameter to be an image like the one

above (SP88808199_324246989). The application fails however to

prevent directory traversal. By replacing the requested image, with

the path ../../../../../../etc/passwd , one has simply to view the source

code of the returned web page to view the contents of the coveted

password file. What the application should have done, was to ensure

that the ../../ ‘s were not acceptable input. (Many developers in an

attempt to rectify this problem employ some sort of black-list,

forbidding certain characters from being entered. This solution fails

however when an attacker uses some form of encoding on his input

for example UTF-8 / UNICODE. Developers should therefore

employ white-listing instead. I.e. specifying that the field can only

be numeric / etc.)

2.3. Command Execution
Many of the initial “ slapped together” web applications were created to assist administrators

perform their tasks from a friendly point and click interface. It is for

this reason that it is not uncommon at all to find web applications

that are front-ends as well as scripts and utilities that run on a single

machine. As a potential attacker, these sorts of applications provide

one with a world of possibilities. What follows is a typical example

of a sys-admin web application. The page allows end users to

perform basic network diagnostics using a web interface (ping/

traceroute/ whois/ finger). As a potential attacker one has only to

guess at how the application is able to accept our input, and then

perform an action on it. (The quickest, dirtiest, most typical way to

do this would be to accept the user input, lets call it $input, and then

perform an action as follows: p̀ing $input .̀

The question one needs to ask is the possible implications of malicious characters being used as

$input. The second time we run the script, we therefore replace the

simple “ IP address” , with “ IP address ; Another Command” (

192.168.0.1 ; ls /etc)

Figure 4. Web based network diagnostic utility

As can be understood from the explanation above, the back end of this script now looks as follows :

‘ping 192.168.0.1 ; ls /etc‘

This effectively tells the application to execute the ping / traceroute / finger as expected, but to then

do a ls of the /etc directory (dir).

Figure 5. The results of our modified traceroute.

The results are then happily displayed in the browser window. Once more, the simple solution

would be for the developer to white list acceptable characters for

input (thereby dis-allowing the possibility of potentially harmful

characters like the & or &&). This problem is found even when the

dreaded back-tick operators are avoided in favour of the “ more

secure” open file-handle approach. In cases like that, even simple

mail-to forms using the format open(MAIL, “|/sbin/sendmail

$address”) become vulnerable to trivial attacks. An enterprising

attacker for example could enter his email address as

haroon@sensepost.com < /etc/passwd.

The effective executed command is therefore /sbin/sendmail haroon@sensepost.com</etc/passwd,

effectively mailing the attacker the systems password file. The

problem above could be remedied by first passing the $address

variable through a regular expression that accepts only alphabets,

periods, hyphens and numerics.

 # remove nastyness

 $address =~ tr/a-zA-Z0-9\@\-\.//dc;

2.4. Query injection
Many web applications interface in some way to some sort of back end database. These applications

typically make use of SQL, some sort of scripting language and a

database connection. These sorts of applications become vulnerable

when a user is able to alter the structure of the passed / generated

SQL query before the query is passed to the back end database

server. The most widely publicized version of this attack has to be

the “ one = one login” . In this case we typically have a web form that

accepts a username and password through and then submits these

details to a backend ASP script.

Figure 6. Typical Login Situation

The username and password from this form are then used to build the following pseudo SQL

Query.

Select ALL_RECORDS from TABLE where UNAME=’username’ and PASS=’password’

The logic used in this query is that the query will return a non zero result if and only if a valid

username and password combination is used. The next step in this

authentication process is therefore to check if the result is non-zero.

If it is, the user is logged in. The problem occurs when the user

submits ‘ OR 1=1—as his username. The resultant pseudo query

now reads :

Select ALL_RECORDS from TABLE where UNAME=’’ OR 1=1- -’ and PASS=’password’

This query now returns all rows from the table, since even though we don’ t have a valid username,

1 is always equal to 1. The addition of the -- characters (MS-SQL’ s

comment characters) ensure that the rest of the SQL string are just

ignored. According to the logic of the login application, the results

of the query are non-zero, and the application therefore assumes that

a valid user has logged in. This “ buggy” login code was once posted

publicly, which resulted in thousands of developers worldwide

copying and pasting the same buggy example. At a point in time,

even shop.Microsoft.com was found to be vulnerable.

The problem is magnified manifold when you consider that some SQL servers make extensive use

of stored procedures. MS_SQL for example contain hundreds of

stored procedures, like XP_CmdShell which allows the execution of

shell commands through SQL queries.

A recent test conducted by DigitalDefense (http://www.digitaldefense.net) found that 6 of 8 books

on .NET used code samples susceptible to Query injection

2.5. Parameter Passing
This problem is abused by wily attackers manipulating the information passed to the back end

system. This information is normally passed through HTML forms

using GET’ s and POST’ s. Information posted in sometimes passed

using <HIDDEN> fields, allowing the developers to pass certain

information without the end user seeing it. Assuming that end users

will not look under the hood however is a dangerous assumption to

make. A well known credit card gateway for example operated under

the following conditions. A user would select his product (or

products) from a catalogue and would then eventually click on

“ PAY” . This would then send an HTTP Post containing the

following fields :

 ITEM = SILK_TIE

 PRODUCT_ID = 456546

 <hidden> PRICE = R500 </hidden>

A user could simply shop to his hearts content, and then alter the hidden price field before clicking

on submit. The back end system would then receive the request for

the item, while deducting our new altered price from our credit card.

2.6. Cookie Manipulation
Cookies are often used within web applications as a means of keeping state, or as a method of

tracking authentication. The cookie is however stored on the client

machine and is thus susceptible to tampering before being passed to

the server. In some cases, once authenticated, a user’ s name is

simply stored in his cookie. This cookie is requested by the server at

different points of the site, to ascertain who the logged on user is. A

simple attack against a system like this is to log in as an unprivileged

user, then change your cookie to contain the username of a user with

higher privileges before continuing to surf the page.

2.7. State Tracking
Perhaps one of the biggest problems with using the web for applications is that HTTP is by its

nature a stateless protocol. A web server ordinarily has no way of

determining that the user who just requested to see his bank balance

is the same user that authenticated successfully 20 seconds ago.

Several kludges have therefore been built on top of it to force some

method of tracking state. These range from the cookies we

mentioned earlier, to URL state strings that are passed around with

HTTP GETS, to hidden fields passed along with every page visited.

HTTP Session ID’ s are used to the same effect. For example,. a

randomly generated string is given to the user on successful login.

This string is then requested at every page he visits to determine his

identity.

This mechanism is often attacked due to insufficient randomness in the generation of the session-id.

If this session id can be predicted or guessed, it then becomes

possible for an attacker to simply walk into someone else’ s persona.

This system also fails when developers fail to track state consistently throughout the application.

For example, User A logs in, obtains his session-id, but then requests

to view the details of User B. The application checks to ensure that it

is indeed User A, and checks to ensure that he has a current state-

string, but fails to link the state string to just User A’ s account

details. These kinds of bugs are harder to track down and harder to

fix often resulting in major portions of the application being re-

written.

3. Conclusion
The length of this paper does not begin to do justice to some of the points that need to be

considered. It totally ignores some others. It is therefore by no means

an authoritative work on the subject and should be seen only as an

introduction to some of the concepts.

As developers we need to start paying more attention to the basics: sanitizing end user input,

validating end user fields, ensuring that our applications fail

gracefully etc.

As defenders we need to realise that that traditional defences are useless against these threats and

that so far, we have only scratched the tip of the iceberg.

