
ATTACK ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS USING
STRAND SPACES

Simon Lukell and Andrew Hutchison

University of Cape Town

Simon Lukell
slukell@cs.uct.ac.za

021-650 3127
Private Bag
Rondebosch

7701

Andrew Hutchison
hutch@cs.uct.ac.za

021-650 3127
Private Bag
Rondebosch

7701

ABSTRACT

Network security protocols make use of cryptographic techniques to achieve goals such as confi-

dentiality, authentication, integrity and non-repudiation. However, the fact that strong cryptographic

algorithms exist does not guarantee the security of a communications system. In fact, it is recognised

that the engineering of security protocols is a very challenging task, since protocols that appear secure

can contain subtle flaws and vulnerabilities that attackers can exploit. A number of techniques exist

for the analysis of security protocol specifications. Each of the techniques currently available is not

capable of detecting every possible flaw or attack against a protocol when used in isolation. However,

when combined, these techniques all complement each other and allow a protocol engineer to obtain a

more accurate overview of the security of a protocol that is being designed. This fact, amongst others,

is the rationale formulti-dimensional security protocol engineering, a concept introduced by previous

projects in the DNA group. We propose anAttack-Constructionapproach to security protocol anal-

ysis within a multi-dimensional context. This analysis method complements the method used in the

existingInference Analysistools developed earlier in the group. This paper gives a brief overview of

the concepts associated with our project, including a summary of existing security protocol analysis

techniques. The emphasis, however, is on theStrand Space Model, which is the formalism that will

be used for the analysis.

KEY WORDS

Security protocol, attack, analysis, strand space model

ATTACK ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS USING
STRAND SPACES

1 INTRODUCTION

Network security protocols make use of cryptographic techniques to achieve goals such as confi-

dentiality, authentication, integrity and non-repudiation. However, the fact that strong cryptographic

algorithms exist does not guarantee the security of a communications system [31]. In fact, it is recog-

nised that the engineering of security protocols is a very challenging task, since protocols that appear

secure can contain subtle flaws and vulnerabilities that attackers can exploit [2]. A number of tech-

niques exist for the analysis of security protocol specifications. Each of the techniques currently

available is not capable of detecting every possible flaw or attack against a protocol when used in iso-

lation. However, when combined, these techniques all complement each other and allow a protocol

engineer to obtain a more accurate overview of the security of a protocol that is being designed [16].

A former DNA group project, the Security Protocol Engineering and Analysis Resource (SPEAR)

[3], and its successor, SPEAR II [29], introduced the concept ofmulti-dimensional security protocol

engineering. Several aspects of cryptographic protocol engineering are collected into one application,

which allows an engineer to rapidly construct, analyse and implement secure protocol designs. The

aspect of security protocol analysis in these projects was based on theInference-Constructiontech-

niques BAN [6] and GNY [13] modal logics respectively.

We propose anautomated Attack-Construction analysis of security protocols within a multi- dimen-

sional context. The primary focus of our investigation is on techniques of effective automatic searches

of the protocol state space for possible attacks (in form of secrecy and authentication violations)

against the protocol. The method of our choice for formal description of security protocols is based

on the so-calledStrand Space Model, first introduced by Thayer F́abrega, Herzog and Guttman [11].

The other aim of the project is to study the relationship between Inference-Construction and Attack-

Construction methodologies in order to facilitate combination of these in a unified environment such

as SPEAR II.

The aims of this paper are:

• to position our proposed research in the context of multi-dimensional security protocol engi-

neering in general and the SPEAR II project in particular,

• to give a brief overview of the existing analysis techniques for security protocols, in order to

place the Attack-Construction methodology in context, and

• to present the Strand Space Model, which is the formalism on which we will build the protocol

analysis.

The remainder of this paper is organised as follows. In Section 2, the concept of multi-dimensional

security protocol engineering is described, with a summary of the SPEAR II project. The analysis

of cryptographic protocols is discussed further in Section 3, with a brief overview of the existing

techniques. The Strand Space Model is presented in Section 4, after which we conclude the paper in

Section 5.

2 MULTI-DIMENSIONAL SECURITY PROTOCOL ENGINEERING

Specialised tool support for formal methods can significantly aid protocol engineers in creating and

implementing cryptographic protocols that do not leak information, achieve their goals and are im-

mune to attacks. In fact, protocol design and analysis has become so advanced and complex that

we cannot perform certain analyses by hand as they take too long and tend to become tedious and

error-prone over time. It has been shown that each of the available techniques is not capable of cut-

ting out every possible flaw in a protocol when used on its own [16]. On the other hand, when used

in combination, they all complement each other, resulting in a more secure implementation. This

multi-dimensionalapproach combines a number of engineering dimensions into one application, aid-

ing the construction, analysis and implementation of protocols. In addition, the SPEAR philosophy

aims tofacilitate cryptographic protocol engineering and aid users in focussing on the critical issues,

by presenting them with an appropriate level of detail, and by guiding them as much as possible. It

is believed that a collection of tools for all aspects of security protocol engineering in a user-friendly

environment will assist in producing more secure cryptographic protocols.

2.1 The SPEAR II tool

A schematic overview of the SPEAR II framework is given in Figure 1. Completed modules within

the framework are indicated by solid outlines, while future modules are denoted by dotted outlines.

Currently SPEAR II consists of four components integrated into one consistent and unified graphical

interface:

• The GYPSIE protocol specification environment is designed for effective and accurate con-

struction of cryptographic protocols and functions as the main interface of the SPEAR II ap-

plication. By using three levels of abstraction presented through different views, the GYPSIE

environment is able to present a protocol engineer with an appropriate impression of a crypto-

graphic protocol and its operation.

• GYNGER is a Prolog-based analyser that performs automatic analysis of protocols by using the

GNY modal logic [13]. The analysis engine employs a forward-chaining approach to mechanise

the tedious application of GNY inference rules, allowing all derivable GNY statements to be

generated accurately and efficiently.

• The Visual GNY environment was created to facilitate GNY-based protocol analysis and works

in close conjunction with GYPSIE. In essence, Visual GNY functions as a user-friendly inter-

face to the GYNGER analyser. To use the Visual GNY environment, users do not need to know

SPEAR Framework

Protocol

Specification

(
GYPSIE
)

Inference

Analysis

(
GYNGER
 /

Visual
 GNY
)

Attack

Construction

Analysis

(Strand Spaces)

Protocol

Code

Generation

Specification

Feedback

OK

Failed

Goals

OK

Attack

Trace

Requirement

Definition

Specification

Protocol

Implementation

CAPSL

Interface

CAPSL

Specification

Figure 1: The current scope and ambitions of the SPEAR II framework

the details of the GNY syntax and notation. However, they must be familiar with the semantics

and concepts underlying the logic to use it effectively.

• A message rounds calculator (not shown) receives a message passing specification from GYP-

SIE and then returns the messages that can be sent together in parallel. This information helps

to ensure that the most efficient protocol design in terms of message rounds can be deployed at

the implementation stage.

In the figure, the big arrows between the modules indicate an intuitive work order when developing

a security protocol, and the thinner arrows show what kind of information is conveyed between the

modules. The figure implies an iterative approach with the analysis modules feeding back results

from analyses to the specification environment.

2.2 The Future of SPEAR II

In order to increase practical value of the tool, a number of additions can be made to the SPEAR II

framework. From a software engineering perspective, aprotocol requirements toolwould assist the

user to obtain an initial protocol specification from a set of requirements rather than having to de-

fine the specification from the beginning. On the other end, animplementation generation toolwould

complete the protocol engineering process. The development of such a tool is currently under research

in the DNA group [34]. One way of increasing the confidence in a protocol specification is to use

external analysis tools. The Common Authentication Protocol Specification Language (CAPSL) [23],

supports interfaces to several tools. Therefore, aCAPSL interfacewould also be a useful addition to

the framework.

As mentioned, the protocol analysis dimension in SPEAR II is based on GNY logic, which is only

one of a number of available analysis techniques for security protocols. In order to increase the

confidence in a protocol specification, it is necessary to incorporate additional analysis methods in the

framework. Our chosen method for protocol analysis, Attack-Construction analysis, complements the

existing GNY Inference-Construction module in SPEAR II. The Strand Space Model is an intuitive

and efficient formalism, with inherent properties favouring an Attack-Construction analysis approach.

The results from other work in this area [32, 24] and our own experience of implementing a prototype

system [18], favour this approach. The remainder of the paper gives an overview of the existing

protocol analysis techniques and a description of the Strand Space Model.

3 SECURITY PROTOCOL ANALYSIS TECHNIQUES

The available security protocol analysis techniques can be classified in a number of ways [15, 22,

20, 9]. For our purposes, the methods are classified as shown in Figure 2. The three main analysis

methods areAd hocanalysis,Inference analysisandExplicit intruder model analysis.

Security Protocol Analysis

Ad Hoc

Inference

Construction

Explicit

Intruder Model

Playing

Attacker

Design

Principles

Attack

Construction

Proof

Construction

Figure 2: A classification of security protocol analysis methods

3.1 Ad HocAnalysis

Ad Hocprotocol analysis is a set of informal methods of analysing protocol design. Many design

flaws can be avoided using this method, in fact, some protocol vulnerabilities can only be detected

with the use ofAd Hocanalysis. The biggest disadvantage with this approach is that the analysis only

shows that the specification is resistant to each test performed on it. Moreover, due to its informal

nature, there is no way of showing that the test itself is complete.Ad Hocanalysis can be divided into

’Playing the Attacker’andDesign Rules and Principles.

3.1.1 Playing the Attacker

This is an informal way of testing the protocol specification (or implementation) for flaws. As the

name indicates, the tester tries to break the protocol with the help of a checklist of previously identified

protocol flaws and also applies tests made specifically for the analysed protocol. The method requires

a great deal of experience and insight in protocol engineering for it to be effective.

3.1.2 Design Rules and Principles

Through the history of security protocol design theory, a number of practical design rules and prin-

ciples have been formulated to assist a protocol engineer to avoid design flaws. In many cases these

principles, if followed, are shown to rule out attacks of a certain type against the protocol [14, 1, 2].

An important group of design principles are those that deal with issues in the area between the sym-

bolic high-level representation of protocols, and the low-level cryptographic operations. For example,

some attacks take advantage of properties of concatenated message components at the bit level [27],

which cannot be identified in a formal analysis on the protocol level.

3.2 Inference Analysis

Inference analysis is a class of analyses that builds a framework of modal logic around properties

such as knowledge and beliefs of the participants in a protocol. The first logic system for protocol

analysis was the so-called BAN logic devised by Burrows, Abadi and Needham [6]. It assumes that

authentication is a function of integrity and freshness, and uses logical rules to trace both of those

attributes through the protocol. There are three main stages for the analysis of a protocol using BAN

logic. The first step is to express the assumptions and goals as statements in a symbolic notation so

that the logic can proceed from a known state to one where it can ascertain whether the goals are in

fact reached. The second step is to transform the protocol steps into symbolic notation. Finally, a

set of deduction rules called postulates are applied. The postulates should lead from the assumptions,

via intermediate formulas, to the authentication goals. The BAN logic has been extended in, amongst

others, GNY [13] (the analysis method used in SPEAR II), and SvO [33]. Inference analysis of

cryptographic protocol has shown to be a success. A number of protocol flaws have been found by

the use of this technique, including Needham-Schröder [25] and CCITT X.509 [7]. However, as stated

previously, these methods have limitations. One type of attack that cannot be detected using this kind

of analysis is so-called type-flaw attacks, which take advantage of some protocols’ vulnerability to

message component substitutions.

3.3 Explicit Intruder Model Analysis

This class of analysis methods involve an explicit model of the protocol and a model of an intruder.

There are many available formalisms that can be used to model the protocol, the participants, the

intruder, their actions and the messages that they exchange. Examples of such formalisms are the lan-

guage used in the NRL protocol analyzer [21], the rank functions used in CSP based analysis [30], and

the previously mentioned Strand Space Model. All approaches within this class use essentially the

same basic assumptions about network communication and the capabilities of the adversary. These

assumptions are based on the model introduced by Dolev-Yao [8], which gives the intruder the fol-

lowing capabilities:

• Read any message and block further transmission

• Decompose a message into parts and remember them

• Generate fresh data as needed

• Compose a new message from known data and send it

It is worth noting here that the intruder is only capable of obtaining encrypted information if he pos-

sesses the key to decrypt it with. This is called theperfect encryption assumption[19], which is a

means of isolating the protocol functionality from the cryptographic operations.

There are two different algorithms used in this model, namely searching the model forwards and

searching it backwards. Tools that use a forward search start in an initial state of a protocol environ-

ment and search the state space for insecure states exhaustively. This kind of analysis we referred to

asAttack construction. The backward search, calledProof construction, tries to prove that a given

insecure state of a protocol is unreachable. Outside the world of security protocol engineering, these

methods are calledmodel checkingandtheorem provingrespectively. The distinction is made here in

order to emphasise the fact that the forward search of a modelfinds an attackagainst a protocol (in

form of a trace), whereas a backward searchfinds a proofof a specified attack being possible against

a protocol.

3.3.1 Attack construction

As the name indicates, this kind of methods construct probable attack sets based on the algebraic

properties of the protocol’s algorithms. Examples of such methods are [17, 21]. These methods are

targeted towards ensuring authentication, correctness, or security properties of the analysed protocols.

Their disadvantage lies in the big number of possible events that must be examined, also referred to the

state space explosion problem. However, various optimisation techniques exist that limit the search

space to a manageable size. Furthermore, in combination with the development of more powerful

computer systems, this approach has shown to be viable for modelled systems of a reasonable size.

The main advantage of this approach is that it is largely automatic, a property that agrees with the

usability philosophy of the SPEAR project.

3.3.2 Proof Construction

Attempts to avoid the exponential searches of Attack Construction, and to extend analyses that in-

volve arbitrarily large numbers of participants and messages, has given rise to the Proof Construction

approach for the analysis of protocol failures [26, 5, 28]. It has the potential of being as thorough

as Attack Construction in proving possible attacks, while avoiding exponential searches by replacing

them with theorems about these searches. This method is completely general, with the disadvantage

that it typically requires significant human insight and guidance.

3.3.3 Hybrid Methods

The complementary nature of model checking and theorem proving has led to attempts of combining

the two above methods in order to take full advantage of the strength of respective approach. An ex-

ample of a domain-independent tool that does this is Berezin’s Symbolic Model Prover (SyMP) [4].

The model checking aspect of the tool provides the high degree of automation and the theorem prov-

ing aspect provides rules for limiting the search space. The challenge in this area is to guarantee

termination of the search, without compromising the (practical) completeness of it.

4 THE STRAND SPACE MODEL

In this section we informally introduce the Strand Space Model. For a detailed, formal account for

the model, refer to the original papers [11, 10, 12]. First, the fundamentals of the model and the basic

terminology is introduced, after which a simple example is given of how the model can be used to

describe a known protocol flaw. Finally, a description of a modelled intruder using strands is given.

4.1 Basic notions

The Strand Space approach is also based on the Dolev-Yao intruder model. It is a graph-based method

that is used to to prove properties of arbitrary combinations of protocols running at the same time. In

the Figure 3,A, B, C andD are principals. The actions of the principals are modelled as a number of

sequential threads put in parallel. These threads are are calledstrands. The nodes on the strands are

the actions the principal performs, in this case+a means that messagea is sent, and−a means that

the same message is received. The sequence of actions along the strand is referred to as itstrace. The

nodes on a single strand are causally related (denoted with the⇒ operation), and between the strands

there is in general the sending and receiving of messages (→). So, also between a sending node and

a receiving node there is a causal relationship. In the figure, strandA sends messagea at a certain

point, and strandC expects messagea at another point, so the two strands can be hooked together at

these points. Astrand spaceis the set of all combinations of strands reflecting the activity of honest

principals involved in a protocol, together with a number of strands of the intruder. The nodes on

all the strands together form a partial order when provided with the causality relation induced by the

sequentiality on a single strand (⇒) and the sending and receiving of messages (→).

A B C D

+a———-—–→−a +b
‖ ⇓ ⇓
‖ −c←—–+c—–→−c
‖ ‖ ⇓ ⇓
‖ ‖ −d←—–+d
‖ ⇓ ⇓
‖ +e—–→−e
⇓ ⇓
−f←——–——-+f

⇓
+g

Figure 3: A bundle

A bundleis a portion of a strand space. It consists of a number of strands – legitimate or not – hooked

together where one strands sends a message and another strand receives that same message. Typically,

for a protocol to becorrect, each bundle must contain one strand for each of the legitimate principals

apparently participating in the session, all agreeing on the principals, nonces and session keys. Pene-

trator strands or stray legitimate strands may also be part of a bundle, even in a correct protocol, but

they should not prevent the legitimate parties from agreeing on the data values, or from maintaining

the secrecy of the values chosen.

A strand is a linear structure, a sequence of one principal’s message transmissions and receptions. A

bundle is a graph-structured entity, representing the communication between a number of strands.

A strand space models the assumption that some values occur only freshly by including only one

strandoriginating that data by initially sending a message containing it. Many strands, by contrast,

may stand ready to combine with the originating strand by receiving the message and processing its

contents further. A strand space will also model the assumption that some values are impossible for

a penetrator to guess. In fact, the space simply lacks any penetrator strand that in which this value is

sent without having first been received. The model allows several instances of the same trace simply

by introducing identical strands representing the same trace being executed at different times. When

a strand sends a message, many other strands may receive that message.

4.2 An attack using strands

We will illustrate the use of the model with an example with the Needham-Schröder public key pro-

tocol. The protocol:

A → B : {Na, A}KB

B → A : {Na, Nb}KA

A → B : {Nb}KB

The protocol is described in thestandard notationfor security protocol descriptions. Each line de-

fines a message in the protocol and the first message is sent from principalA to B. The message is

a concatenation ofNa, which is a nonce generated by principalA, and the identity ofA. These two

values are encrypted with the public key ofB, (KB).

A B
{Na, A}KB•——————–→•

‖ ‖
⇓ {Na, Nb}KA

⇓•←——————–•
‖ ‖
⇓ {Nb}KB

⇓•——————–→•
Figure 4: Needham-Schröder

In the Strand Space formalism, the intended protocol run is given in the bundle of Figure 4. The

column belowA represents the strand consisting of the initiator’s activity during the exchange, while

the column underB represents the strand of the responder’s activity. In this abbreviated form of the

Needham-Schröder public key protocol, we assume that each principal has acquired the other’s pub-

lic key. The initiatorA, generates a nonce, joins this to his name and encrypts this with the intended

respondent’s public key. The respondent generates a nonce of his own, sending it and the initiator’s

nonce back, encrypted with the initiator’s public key. He has this way answered the initiator’s chal-

lenge by showing that he could read the first message. Finally, the initiator returns the respondent’s

nonce encrypted with the respondent’s public key.

The intended result of the protocol is that the two principals should end up sharing access to the val-

uesNa andNb, each associating these values with the other participant, and no other party should

be in possession of them. The protocol might be used in a context where the two values are hashed

together to provide a shared symmetric key for an encrypted session. In fact, it does not achieve this

goal [17]. Figure 5 shows a bundle that provides a counterexample and illustrates what can go wrong

in this protocol. In this figure, the penetratorP has two moments of activity, each represented by

a short strand. The initiatorA intends to have a session withP or some other principal whose key

P controls. P uses this opportunity to impersonateA to B. Figure 5 shows in more detail how this

behaviour could be achieved.

A P B
{N1, A}KB•——————–→•

‖ ‖
‖ ⇓ {N1, Nb}KB‖ • ——————–→ •
‖ ‖
⇓ {N1, N2}KA

⇓•←———————————————•
‖ ‖
‖ ‖
⇓ {N2}KB

P ‖
•——————–→• ‖

‖ ‖
⇓ {N2}KB

⇓• ——————–→ •
Figure 5: Needham-Schröder Infiltrated

4.3 The Intruder

The intruder’s capabilities are decided by two factors, namely the set of key known initially to the in-

truder, and a set of penetrator strands that allow the intruder to generate new messages from messages

he intercepts. Apenetrator setconsists of a set of keysKP . Typically, it would contain: all public

keys; all private key held by penetrator or his accomplices; and all symmetric keysKPX ,KXP ini-

tially shared between the penetrator and principals playing by the protocol rules. It may also contain

”lost keys” that became known to the penetrator previously, perhaps because he succeeded in some

cryptanalysis.

The atomic actions available to the penetrator are encoded in a set of penetrator traces. They sum-

marises the ability to discard messages, generate well-known messages, piece messages together, and

apply cryptographic operations using keys that become available. A protocolattackrequires hooking

together several of these atomic actions.

The existing penetrator traces are:

M. Text message:〈+t〉 wheret is a known component

F. Flushing:〈−g〉
T. Duplication:〈−g, +g, +g〉
C. Concatenation:〈−g,−h, +gh〉
S. Separation:〈−gh, +g, +h〉
K. Key: 〈+K〉 whereK ∈ KP

E. Encryption:〈−K,−h, +{h}K〉
D. Decryption:〈−K−1,−{h}K , +h〉

These capabilities of the intruder correspond directly with the intruder capabilities of the Dolev-Yao

model described earlier. Figure 6 shows an example of how these penetrator strands can be hooked

together to provide the behaviour of the first step in Figure 5. The open circles in the figure (◦) show

the two points with which the diagram connects with the first nodes ofA andB’s strands at the top of

Figure 5. The label above each strand shows which kind of penetrator strand it is.

D
{N1, A}KP◦——————→•

‖
‖

K ‖
K−1

P ⇓•——————→•
‖
‖ E
⇓ N1A•————–→•

‖
‖

K ‖
KB ⇓•————–→•

‖
⇓ {N1A}KB•————–→◦

Figure 6: Needham-Schröder: Penetrator’s first step

The Strand Space Model is an appealing, clean model of security protocols that brings together many

techniques that have been used in the field of security protocol analysis. The model considers the

strand the basic unit as opposed to thestateof the modelled principals. This fact makes the model

more economical in both specification and Attack-Construction analysis, since it has in-built partial

order optimisation of the search.

5 CONCLUSION

We have presented the concept of multi-dimensional security protocol engineering and the SPEAR II

project, and positioned our proposed research concerning Attack Analysis in this context. A brief

overview of the existing analysis methods was given, and finally, in order to complete the description

of our project, the Strand Space formalism was presented.

There are are a number of challenges ahead. The Strand Space Model is a good start in implementing

an efficient automatic attack analysis tool, but other optimisation techniques must be considered in

order to maximise the value of it. Furthermore, considering the context of the tool, it is of importance

to adapt it as far as possible so that it complements the available Inference-Analysis in an optimal

manner. Lastly, in accordance with the SPEAR philosophy governing usability, the analysis must be

made accessible to a user without expert knowledge in the field of security protocol engineering.

If these challenges are met, the analysis dimension will be able to detect a larger set of protocol

vulnerabilities than is currently possible, which would be a valuable step towards a powerful multi-

dimensional cryptographic protocol engineering system.

REFERENCES

[1] M. Abadi and R. Needham. Prudent Engineering Practice for Cryptographic Protocols.IEEE

Transactions on Software Engineering, 22(1):6 – 15, January 1996.

[2] R. Anderson and R. Needham. Programming Satan’s Computer.Computer Science Today,

Springer LNCS, 1000:426–441, 1995.

[3] J.P. Bekmann, P. De Goede, and A.C.M. Hutchison. SPEAR: Security Protocol Engineering

and Analysis Resources. InDIMACS Workshop on Design and Formal Verification of Security

Protocols. Rutgers University, September 1997.

[4] Sergey Berezin.Model Checking and Theorem Proving: a Unified Framework. PhD thesis,

Carnegie Mellon University, 2002.

[5] S.H. Brackin and R.W. Lichota. CASE for High Assurance: Utilizing Commercial Technology

for Automated Cryptographic Protocol Analysis. InProceedings of the Sixth Annual Dual-Use

Technologies and Applications Conference, June 1996.

[6] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.ACM Transactions on

Computer Systems, 8(1):18–36, 1990.

[7] CCITT. CCITT X.509. The Directory - An Authentication Framework, 1988.

[8] D. Dolev and A. Yao. On the security of public key protocols.IEEE Transactions on Information

Theory, 29(2):198 – 208, 1983.

[9] N. A. Durgin and J. C. Mitchell. Analysis of security protocols. InCalculational System Design,

pages 369–395. IOS Press, 1999.

[10] F. Javier Thayer F́abrega, Jonathan C. Herzog, and Joshua D. Guttman. Honest ideals on strand

spaces. In1998 Computer Security Foundations Workshop, June 1998.

[11] F. Javier Thayer F́abrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Why is

a security protocol correct? InProceedings of 1998 IEEE Symposium on Security and Privacy,

IEEE Comput. Soc, May 1998.

[12] F. Javier Thayer F́abrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Proving

security protocols correct.Journal of Computer Security, 15(7):191–230, 1999.

[13] L. Gong, R. Needham, and R. Yahalom. Reasoning about Belief in Cryptographic Protocols.

In Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy, pages 234 –

248, Oakland, California, 1990. IEEE Computer Society Press.

[14] L. Gong and P.F. Syverson. Fail-Stop Protocols: An Approach to Designing Secure Protocols.

In The Fifth International Working Conference on Dependable Computing for Critical Applica-

tions, pages 44 – 55. Springer-Verlag, September 1995.

[15] Stefanos Gritzalis, Diomidis Spinellis, and Panagiotis Georgiadis. Security protocols over open

networks and distributed systems: Formal methods for their analysis, design, and verification.

Computer Communications, 22(8):695–707, 1999.

[16] Nicholas J. Hopper, Sanjit A. Seshia, and Jeanette M. Wing. Combining theory generation and

model checking for security protocol analysis. InPost-CAV Workshop on Formal Methods in

Computer Security, July 2000.

[17] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In

Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 1055,

pages 147–166. Springer-Verlag, Berlin Germany, 1996.

[18] S. Lukell, C. Veldman, and A.C.M. Hutchison. Automated attack analysis and code generation in

a unified, multi-dimensional security protocol engineering framework. Technical Report CS02-

15-00, Department of Computer Science, University of Cape Town, October 2002.

[19] W. Marrero, E. Clarke, and S. Jha. A model checker types for authentication protocols. InDI-

MACS Workshop on Design and Formal Verification of Security Protocols. Rutgers University,

September 1997.

[20] Meadows. Invariant generation techniques in cryptographic protocol analysis. InPCSFW:

Proceedings of The 13th Computer Security Foundations Workshop. IEEE Computer Society

Press, 2000.

[21] Catherine Meadows. The NRL protocol analyzer: An overview.Journal of Logic Programming,

26(2):113–131, 1996.

[22] Catherine A. Meadows. Formal verification of cryptographic protocols: A survey. InASI-

ACRYPT: Advances in Cryptology – ASIACRYPT: International Conference on the Theory and

Application of Cryptology. LNCS, Springer-Verlag, 1994.

[23] J. Millen. CAPSL: Common authentication protocol specification language. Technical Report

MP 97B48, The MITRE Corporation, 1997.

[24] Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process cryptographic

protocol analysis. InACM Conference on Computer and Communications Security, pages 166–

175, 2001.

[25] R. Needham and M. Schroeder. Using encryption for authentication in large networks of com-

puters.Communications of the ACM, 21(12):993–999, 1978.

[26] Lawrence C. Paulson. Mechanized proofs of security protocols: Needham-Schroeder with pub-

lic keys. Technical Report 413, University of Cambridge, Computer Laboratory, 1997.

[27] O. Pereira and J.-J. Quisquater. On the perfect encryption assumption. InProceedings of the

Workshop on Issues in the Theory of Security, pages 42–45, 2000.

[28] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In8th

IEEE Computer Security Foundations Workshop, pages 98–107, 1995.

[29] E. Saul. Facilitating the modelling and automated analysis of cryptographic protocols. Master’s

thesis, DNA Research Group, Computer Science Department, University of Cape Town, 2001.

[30] Schneider. Verifying authentication protocols with CSP. InPCSFW: Proceedings of The 10th

Computer Security Foundations Workshop. IEEE Computer Society Press, 1997.

[31] B. Schneier. Why cryptography is harder than it looks.Information Security Bulletin, 2(2):31 –

36, March 1997.

[32] Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena: A novel approach to efficient

automatic security protocol analysis.Journal of Computer Security, 9(1/2):47–74, 2001.

[33] P.F. Syverson and P.C. van Oorschot. On Unifying Some Cryptographic Protocol Logics. In

Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, pages 14 – 29,

Oakland, California, May 1994. IEEE Computer Society Press.

[34] B. Tobler and A. Hutchison. Generation, analysis and verification of cryptographic protocol

implementations. July 2003.

