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ABSTRACT 

Computer security, and intrusion detection in particular, has become increasingly important in 
today’s business environment, to help ensure safe and trusted commerce between business partners 
as well as effective organisational functioning.  Various approaches to intrusion detection are 
currently being utilized, but unfortunately in practice these approaches are relatively ineffective.  
New ways and means must, therefore, continuously be researched and defined.  This paper will 
propose a proactive and dynamic model, based on trend analysis, fuzzy logic and neural networks 
that could be utilized to minimise and control intrusion to an organisation’s computer system.  The 
model will be based on the assumption that each user is unique and leaves a unique footprint on a 
computer system when using it.  A back-propagation neural network was trained to implement this 
idea. 

 

KEY WORDS 

Computer security; intrusion detection; intrusion detection systems; fuzzy logic; neural network; 
pattern recognition. 



  

UTILIZING NEURAL NETWORKS FOR EFFECTIVE 

INTRUSION DETECTION 

1 INTRODUCTION 

Over the last few decades, information has become an organization’s most precious asset and most 
things an organisation does, involves using information in some way or another (Peppard, 1993; 
Von Solms, 1993).  Organisations have therefore become increasingly dependent on the rapid 
access and management of information since more information is being stored and processed on 
network-based computers than ever before.  The increase in connectivity not only provides access 
to larger and varied resources of data more quickly than ever before, it also provides an access path 
to the data from virtually anywhere on the network-based environment (Seleznyov, 2001). 

Also, during the same period, modern computing systems have become increasingly complex 
due to constant dynamic changes in configurations, software and usage patterns.  This situation 
creates almost unlimited opportunities for malicious persons, who are using software applications’ 
and operating systems’ vulnerabilities to successfully penetrate a computer system illegally 
(Seleznyov, 2002).  

Evidence of this statement can be seen in the 2001 CSI/FBI Computer Crime and Security 
Survey (Power, 2001).  According to this source the annual financial losses brought about by 
security breaches in 2001 have increased by 277% when compared to the results from 1997.  The 
“2002 Computer Crime and Security Survey” confirms this by stating that the threat from computer 
crime and other information security breaches continues unabated and that the financial toll is 
mounting (Richardson, 2002). 

Intrusion detection, originally proposed by Dorothy Denning in 1987, is an approach to 
counter these kinds of attacks (Denning, 1987).  Intrusion detection is implemented by an intrusion 
detection system and today there are many commercial intrusion detection systems available.  
Generally speaking, most of the commercial implementations are relative ineffective and 
insufficient, which gives rise to the need for research on more dynamic intrusion detection systems 
(Dowland, 2000). 

The objective of this paper is to propose such dynamic intrusion detection system, with the 
emphasis on the neural network component.  The neural network component will implement the 
neural approach, which is based on the assumption that each user is unique and leaves a unique 
footprint on a computer system when using it.  If a user’s footprint does not match his/her reference 
footprint based on normal system activities, the system administrator or security officer can be 
alerted to a possible security breach. 

To address the mentioned objective, the paper will first provide an overview of intrusion 
detection systems (IDS).  It will commence with a discussion on the most important definitions and 
components of intrusion detection systems, as well as shortcomings currently encountered with 
misuse intrusion detection systems.  This section will conclude with a short discussion on how these 
shortcomings can be addressed. 

The paper will also propose a model that can be used to combat intrusion attacks proactively 
and will commence with the identification of nine major components of the proposed model.  Each 
component will then be discussed with specific reference to the neural engine component and the 
neural approach.   

Finally, the paper will describe a working prototype for the neural engine component of the 
proposed model.  It will commence with background information on the software used to develop 



  

this prototype, followed by a brief discussion on the implementation process for the prototype.  This 
section will conclude with a brief discussion on the test results obtained during testing.               

 

2 OVERVIEW OF INTRUSION DETECTION 

The need for a more dynamic intrusion detection system was highlighted as one of the main 
research areas currently being undertaken in the field of computer security.  In order to define such 
a dynamic intrusion detection system one has to investigate the terms intrusion detection, intrusion 
detection system and intrusion detection analysis approach. 

Bace defines intrusion detection as the process of intelligently monitoring the events 
occurring in a computer system or network, analysing them for signs of violations of the security 
policy (Bace, 2000).  The intrusion detection process is performed by an intrusion detection system 
and is defined as a software or a hardware product that monitors the events occurring in a computer 
system or network and analyses them for signs of intrusions, which are defined as attempts to 
compromise the confidentiality, integrity, availability, or to bypass the security mechanisms of a 
host or network (Bace, 2000).  

An intrusion detection system normally consists of three functional components namely: 

• An information source that provides a stream of event records; 

• An analysis engine that identifies signs of intrusions; and 

• A response component that gene rates reactions based on the outcome of the analysis 
engine (Bace, 2000, p.27). 

The first component of an intrusion detection system, also known as the event generator, is a 
data source.  Data sources can be categorized into four categories namely (Bace, 2000): 

• Host-based monitors: This monitor collects data from sources internal to a computer, 
usually at the operating system level; 

• Network-based monitors: This monitor collects network packets; 

• Application-based monitors: This monitor collects data from running applications; and 

• Target-based monitors: This monitor uses cryptographic hash functions to detect 
alterations to system objects and then compares these alterations to a policy. 

The second component of an intrusion detection system is known as the analysis engine.  This 
component takes information from the data source and examines the data for symptoms of attacks 
or other policy violations.  The analysis engine can use one or both of the following analysis 
approaches: 

• Misuse detection: An analysis engine that implements this strategy will search for 
something defined to be “bad”.  This type of detection engine detects intrusions that 
follow well-known patterns of attacks (or signatures) that exploit known software 
vulnerabilities (Kumar and Spafford, 1995;Ilgun and Kemmerer, 1995).  The primary 
limitation of this approach is that it looks only for known weaknesses, and may not be 
of much use in detecting unknown future intrusions (Seleznyov, 2000). 

• Anomaly detection: An anomaly based detection engine will search for something rare 
or unusual.  They analyse system event streams, using statistical techniques to find 
patterns of activity that appear to be abnormal.  The main problems of anomaly based 
intrusion detection systems are that they tend to be computationally expensive, 
because several metrics are often maintained that need to be updated against every 



  

system activity and they may be gradually trained incorrectly to recognize an intrusive 
behaviour as normal in the future due to insufficient data (Seleznyov, 2000).  

The analysis engine can perform real time or non-real time intrusion detection.  Real time 
detection is also referred to as on- line detection.  On- line systems are designed to detect intrusions 
while they are happening, thereby allowing for quicker response from the response component of 
the system.  The main disadvantage associated with this technique is that the system is 
computationally very expensive because it requires continuous monitoring.  Non-real time detection 
is also referred to as off- line detection.  Off- line intrusion detection systems are running 
periodically by detecting intrusions after-the-fact, based on system logs.  The main drawback of the 
off- line systems is that it can mainly act reactively to intrusion attacks.  

The third component of an intrusion detection system is the response manager.  In basic terms, the 
response manager will only act when inaccuracies (possible intrusion attacks) are found on the 
system, by informing someone or something in the form of a response.  Intrusion detection 
responses can either be categorised as active or passive.  In active responses the system pro-actively 
influences the attack, for example, by blocking a certain IP address.  Passive responses merely 
report and log these attacks, usually to a database.    

To summarise, a dynamic intrusion detection system can be defined as a system that will 
identify intrusion attacks in real- time, that will update itself over a period of time with a minimum 
of new rules required from vendors and that will not allow an intruder to train the system 
incorrectly.  To develop such a dynamic intrusion detection system, one could utilize a hybrid 
intrusion detection system, which employs both anomaly and misuse analysis strategies.  The 
anomaly strategy will be used to detect new or unknown attacks, or other scenarios of concern, 
while misuse strategy will be used to detect known attack signatures and protect the integrity of the 
anomaly strategy by ensuring that a patient adversary cannot gradually change behaviour patterns to 
re-train the anomaly detector to accept attack behaviour as normal.  The system could also use the 
on- line detection technique with special emphasis on low computational overheads and a proactive 
approach as well as an active and passive response manager.  This strategy will be discussed in 
more detail in the next section. 

 

3 THE NEGPAIM MODEL 

Having introduced the terms intrusion detection, intrusion detection system and intrusion detection 
analysis approach, it is now possible to explain the hybrid intrusion detection system. This system 
is implemented through a model called Next Generation Proactive Identification Model 
(NeGPAIM).  NeGPAIM is an improved version of PAIM that was developed as a misuse based 
intrusion detection system (Botha et al, 2002).  Figure 1 shows the various components of 
NeGPAIM.   



  

 

 

Figure 1:  A General Representation of NeGPAIM 

 

The different components of NeGPAIM are: 

• Information Provider: 
Refers to the different sources that provide input data to the intrusion detection system. 

• Collector: 
This component is a software unit that runs at the operating system level and is responsible 
for gathering the information from the information sources and sending it to the information 
refiner. 

• Coupler: 
This is an interface tha t provides a way for the three tiers to communicate amongst 
themselves. 

• Information Refiner: 
The refiner is responsible for structuring the data into a standard format so that it can then 
be used by the fuzzy engine and the neural engine.   

• Fuzzy Engine: 
The fuzzy engine is one of the two low-level processing units of NeGPAIM and will process 
the input data.  The engine implements the misuse detection approach and will firstly 
compute a template and a user action graph for each user and secondly map the two graphs 
to determine whether a user (intruder) is performing an intrusion attack.  If the user 



  

(intruder) is conducting an intrusion attack, the engine will notify the central analysis engine 
with an intrusion probability value. This process is performed on a continuous basis. 

• Neural Engine: 
 The neural engine is the second low-level processing unit and will also process the input 

data.  This engine will process the data by searching for patterns of user behavior that 
appear to be abnormal. The engine will report any abnormal behavior to the central analysis 
engine by way of an intrusion probability value. 

• Central Analysis Engine: 
The central analysis engine is a high level processing unit. The objective of this engine is to 
analyse the possibility that a user (intruder) is conducting an intrusion attack.  The engine 
will achieve this by performing the following functions: 

Χ To calculate the statistical mean value (average) for both the probability values 
(fuzzy probability value and neural probability value) received from the low-level 
components for each user on a continuous basis; 

Χ To convert this statistical mean value (average) to an intrusion probability level that 
will be used to combat intrusion proactively and dynamically on a continuous basis; 
and 

Χ To ensure accurate intrusion identification by implementing threshold detection.  
The output of the central analysis engine is the generation of an alert signal that will 
be sent to the responder.       

• Responder: 
The responder is responsible for taking the necessary action in the event of an intrusion.  

• Manager: 
This component allows for the management and configuration of the intrusion detection 
system.  

The nine major components, constituting the NeGPAIM model, were briefly introduced and 
discussed.  The neural engine, the fuzzy engine and the central analysis engine are the main 
components of the model since they directly implement the misuse and anomaly approaches.  See 
Botha et al, 2002 for a more detailed overview on NeGPAIM and Botha et al, 2001 for more detail 
on the fuzzy engine.  The rest of the paper will only focus on the implementation of the neural 
engine. 

 

4 THE NEURAL ENGINE 

The previous section introduced NeGPAIM and its three main components.  This section will 
discuss one of the three components namely the neural engine.  The neural engine is based on the 
anomaly intrusion detection technique. The anomaly intrusion detection technique involves a 
process of establishing profiles of normal user behaviour, comparing actual user behaviour to those 
profiles, and flagging deviations from the normal (Bace, 2000). The aim of this approach is thus to 
verify the identity of each user on the system through comparing current user behaviour against 
historical user behaviour.   

For this approach to be successful, one has to investigate the total behaviour pattern of users 
when interacting with a computer system.  The total behaviour pattern of user interactions consists 
of two parts, that is, the behaviour of the user and the behaviour of the computer system.  Up to 
now, the behaviour of the user was mostly used to detect abnormal behaviour, for example, the set 
of typical commands being used by the particular user and the frequencies with which they are 
being utilized, were used to identify the abnormal behaviour.  The behaviour of the system can be 
defined in terms of the system responses to the user behaviour.  For example, if the user is allowed 
to use an MS Word program, the memory usage and the processor power for the Word program can 
represent the behaviour of the computer system. 



  

Furthermore, the total behaviour pattern of users must also include the needs of every user on 
the computer system.  For example, some users will mostly use the system to send and receive e-
mails while other users in the same organisation, such as secretaries, might use it to type and edit 
documents.  The needs of a user should be directly proportional to the time spent by the user on the 
system, thus for secretaries, for example, the time elapsed for the Word program should represent 
the needs of the secretary for the system.  

Various methods, such as statistical techniques, were investigated to implement this approach.  
The main disadvantage associated with this technique is that one must define certain statistical 
assumptions that might influence the accurateness of the engine.  With neural networks, such 
assumptions are not needed and therefore it was decided to implement this approach through an 
artificial neural network.  A neural network is a set of simple elements (neurons) each linked to 
some of the others, that transmit information to each other through links (connections).  The 
network consists of various input and output neurons and uses certain weight structures and 
thresholds to predict an output (Murray, 2000).   

The neural engine implements the multi- layer perceptron (MLP) network and is implemented 
through two stages.  

Χ In the first stage, the engine is populated by a training set of historical sample data 
that is representative of the total user behavior.  This training process is only 
performed once for each user on the system and thereafter the historical behavior 
pattern (reference) is updated periodically.  The supervised learning strategy is used 
to populate the engine and the mathematical chain rule for differentiation is used for 
the learning part (Murray, 2000).  The mathematical chain rule can be 
mathematically represented by the following expressions:  
For a set of N patterns of a training session the mean square output 
error is 
       1 
ε =    ∑patterns p  ∑outputs k (V<kp - Vkp)2   …   (1) 
       2N 
 
where N = the number of patterns  
V<kp = the desired output  
Vkp = the actual output 
and the error is made smaller by the following expression 
 
                   ∂ε 
∆Τab  = - η       …   (2) 
                  ∂Τab 
 
where Τab = the applied weight . 

 
Χ In the second stage, the engine accepts input data (event data) and compares it to 

historical behavior references, determining similarities and differences.  This process 
will be conducted on a continuous basis. 

The output of this behaviour recognition process is a numeric value: 1 if the user behaviour 
has changed over a period of time and 0 if the user behaviour did not alter over a period of time.   

To summarise the neural approach, the total behaviour pattern of user interactions, which 
consists of 1) the user behaviour 2) the computer system behaviour and 3) the user needs, are used 
to determine whether a user is the “correct - legitimate” user.  The approach is implemented by the 
neural engine through two basic steps.  During the first step a reference behaviour pattern is built 
for each user on the system and during the second step the current behaviour of each user is 



  

compared against the reference pattern.  The result of the comparison process is sent to the central 
analysis engine.  NeGPAIM’s fuzzy engine controls the update of the reference behaviour pattern, 
thereby ensuring that the intruder cannot train the intrusion detection system to accept abnormal 
behaviour as normal.  The implementation of the neural engine was done with an off-the-shelf 
product called Q-NET.  The implementation details of the neural engine will be described in the 
next section by means of the implementation model. 

 
5 THE EXPERIMENT 

An important step in creating any new approach is proper testing.  To test the neural approach 
thoroughly, it was important to implement a working prototype in a typical real- life environment.  
The objective of the experiment was two-fold, firstly to determine whether the neural network can 
be trained and used to accurately predict abnormal user behaviour and secondly to minimize the 
false alarm rate to an acceptable level, typically less than ten percent.   

The neural network program, Q-NET, has been designed to provide both the expert and the 
novice with a powerful tool for creating and implementing back-propagation style neural networks 
into everyday problem solving such as the intrusion detection problem. 

The Q-NET program was implemented in a Windows 2000 client-server environment through 
an implementation model.  The implementation model consists of four steps: 

• Data Collection and Preparation; 
• Creating a Neural Network Model; 
• Training the Model; and 
• Testing the Model. 

The first step in the implementation process is collecting a set of training examples.  Most of 
the data for the training examples was obtained from the various operating system audit logs.  For 
the rest of the data, a program in the form of a windows service was developed and loaded on all 
the host computers.  As soon as a user interacts with the system, the windows service is triggered 
and the necessary data is sent to a central database.  The SQL Server 2000 Database Management 
System manages the data.  For example, one particular user behaviour pattern could be represented 
as a string of values as follows: 

 

Process  Behaviour 
Element 

Behaviour 
Element 

Behaviour 
Element 

Process Name Time Elapsed Memory Used (Kb) Etc.  …. 

MS Word.exe 4000 1438 ….. 

  

Table1: User Behaviour Pattern  

 

This behaviour pattern defines typical behaviour elements when the process, MS Word.exe is 
used.  From this string, the refiner must create the training examples.  The refining process includes 
the transformation of the string values from nominal values to numeric values.   For this prototype, 
the twelfth most commonly used processes were selected and together with the other behaviour 
elements (such as time elapsed and processor power), an eighteen byte input string, also referred to 
as the input vector, was constructed.  Instead of using the actual name of the process for the input 
vector, the process can be represented by a series of 0’s and a single ”1”.   When analysing table 2, 



  

inputs 1 to 12 will represent the twelve processes.  For this particular input, 
“1,0,0,0,0,0,0,0,0,0,0,0”, will represent the MS Word.exe process.    

For the continuous data, such as the time elapsed, the total time spectrum was divided into 
eleven non- linear intervals.  For the time elapsed example, a time interval between 1 and 10 
seconds will represent a value of 0.1 and for a time interval between 11 seconds to 50 seconds, a 
value of 0.2 is allocated. Thus, if a user executes the Word process for 46 seconds, then a value of 
0.2 will be allocated. 

An example of a particular user behaviour input vector could be represented as follows: 

 

Process                                                                               Behaviour Elements 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 0 0 0 0 0 0 0 0 0.2 0.3 0 0 0 0 

 

Table 2: Input Vector 

 

The final part of the data preparation process is to tell the neural network what the output 
should be for every given input vector.  The output will be between 0 and 1. For example, if the 
input vector corresponds exactly to a legitimate user behaviour pattern, then the output should be 
equal to “1”.   If the input vector is completely different to a legitimate user behaviour pattern, then 
the output should be equal to “0”.  

The final input-output vector for a particular user behaviour pattern could be as follows: 

 

Input  Output 

“1,0,0,0,0,0,0,0,0,0,0,0,0.2,0.3,0,0,0,0” “1” 

 

Table 3: Input-Output Vector 

 

The second step is to create the neural network model.  The standard five- layer back-
propagation architecture was chosen for the neural network.  The idea was to get results on the most 
standard and general architecture so that the feasibility of the approach could be demonstrated and 
the results could easily be replicated.  More sophisticated architectures could be used and they 
would probably lead to slightly better results.  The input layer consists of 18 units, representing the 
user behaviour pattern; the hidden layers have 10 units and the output layer has 1 unit.  Figure 2 
models this network. 

 

 



  

 

Figure 2: Neural Network Model 

 

Training the neural network is the third step.  With the training examples created as 
mentioned during the explanation on the first step, the next step was to extract a training set, test set 
and production set.  The training set was used to actually train the neural network, while the test set 
was used to verify that the neural network function correctly.  The training process continued until 
the lowest average level of error is reached.  The weights that produced the lowest average error on 
the test set are kept.  The final architecture and weights represent the trained neural network model.  
The production set was used at the end as a final test of how accurately the model actually identifies 
the abnormal user behaviour.   Figure 3 shows the results for the training process.  It can be seen 
from the graph, see pointer (a), that the model has a 0.999992 correlation between the target result 
and the model result, which indicates that the model is properly trained. 

 

 



  

 
 

Figure 3: The training process results 

 

The final step is to test the neural network with the production test set.  Figures 4 and 5 show 
the results of this test. 

 

 



  

 

Figure 4: The Test Results 

 

 

Figure 5: The Target/Output Test Graph 

 



  

Examining the production set testing results would seem to indicate that the neural network, 
which implements the neural approach, performs relatively well.  The neural network identifies 45 
abnormal user behaviour patterns out of a possible 186 patterns.  The network was more than 97% 
accurate in detecting unusual activities, with less than 5% false alarm rate.  Figure 4 and 5 show the 
correlation between the predicted network outputs and the true target outputs.  According to figure 
4, all the patterns’ network outputs, except patterns 58, 70, 84 and 98, are in correlation with the 
true target outputs (see pointers 1-4).  Figure 5 provides a graphic representation of the results and 
confirm that pattern 58, see pointer 5, has a target output of 0.45 but the network is equal to 1.01, 
also pattern 70, see pointer 6, has a target output of 0.49 but the network output is equal to 0.95.  
Thus if one examines these two patterns, one can conclude by saying that both the behaviour 
patterns were non- legitimate user behaviour patterns, but the neural network incorrectly predicted 
that they were legitimate behaviour patterns.   

While these results appear favourable and can be utilized in an intrusion detection system, the 
next step will be to automate and streamline the learning process of the neural network, which is 
controlled by the fuzzy engine, so that it can be tested on a bigger scale and in a true-life 
environment.  To conclude, although this experiment was done on a very small scale, the results 
seem significant and prove that the neural approach as defined in section 4 has the potential to 
overcome one of the shortcomings of current anomaly intrusion detection system; that is, complex 
and high computational overheads and incorrect training process.       

 

6  THE CONCLUSION 

With the increasing number of breaches in security, intrusion detection has become very important 
for a large number of organizations. There are many different aspects of intrusion detection to be 
considered. Most commercial systems utilize a misuse analysis engine. They can therefore only 
detect known intrusion attacks. Anomaly detection systems are unreliable and have high overheads 
and few commercial solutions implement them. To increase the reliability of intrusion detection 
systems, a new approach is required. This approach should be able to obtain information from a 
wide variety of sources, and employ both analysis and misuse detection to form a hybrid system. 
An alternative model, called NeGPAIM, has been proposed to overcome these shortcomings. 

The neural engine was highlighted as one of the three main components of NeGPAIM.  This 
component implements the neural approach as outlined in section four.  The approach uses the total 
behaviour pattern of user interactions to determine whether a user is the “correct - legitimate” user.  
The approach consists of two steps.  During the first step a reference behaviour pattern is built up 
for each user on the system and during the second step the current behaviour of each user is 
compared against the reference pattern. 

The neural approach was implemented through an initial working prototype.  Although the 
prototype was done on a small scale, favourable results were obtained.  The network was more than 
97% accurate in detecting unusual activities, with less than a 5% false alarm rate. 

To conclude, more tests and research are currently being conducted on NeGPAIM and the 
prototype.  The ultimate objective of this project is to streamline this model through practical 
implementations and to utilize this model to combat intrusion attacks proactively.  
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