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ABSTRACT 

Today, business continuity depends significantly on the continuous availability of information 
systems. It is well-known that such systems must be protected against intrusion and denial of 
service attacks. Historically, many of such attacks used ill- formed data-packets and/or protocol 
runs, which did not conform to the protocols’ standards. Attackers exploited vulnerabilities of the 
protocols’ implementations in the servers’ operating systems: conformance with protocol standards 
was not tested properly. Prominent examples are: the ping of death, the land attack, the SYN flood 
attack . 

To protect information systems better, one should aim to recognize and block such attacks as 
early as possible, i.e. already in a firewall at a company network’s border. We will discuss in this 
paper the design of a run-time protocol-verifier and data-packet sanity-checker we will use to 
complement the Intelligent Firewall, which is currently developed in the Janus project. The 
presented concepts are, however, generic and applicable to any firewall. 
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RUN-TIME PROTOCOL-CONFORMANCE VERIFICATION IN 

FIREWALLS 

1 INTRODUCTION 

Today, business continuity depends significantly on the continuous availability of information 
systems. It is well-known that such systems must be protected against intrusion and denial of 
service attacks. Historically, many of such attacks used ill- formed data-packets and/or protocol 
runs, which did not conform to the protocols’ standards. By doing so, they caused servers to crash 
or perform tremendously poorly at best. Attackers exploited vulnerabilities of the protocols’ 
implementations in the servers’ operating systems: conformance with protocol standards was not 
tested properly. Prominent examples are: the ping of death (using fragmented PING requests 
exceeding the maximum IP packet size), the land attack (using TCP segments with equal source 
and destination address as well as equal source and destination port number), the SYN flood attack 
(blocking server resources by using incomplete protocol runs of TCP connection establishments). 
We could list several more. To protect information systems better, one should aim to recognize and 
block such attacks as early as possible, i.e. already in a firewall at a company network’s border. We 
will discuss in this paper the design of a run-time protocol-verifier and data-packet sanity-checker 
we will use to complement the Intelligent Firewall, which is currently developed in the Janus 
project. The presented concepts are, however, generic and applicable to any firewall. 

The aim of the discussed security sub-system is easy to formulate: check arriving data packets 
for conformance with protocol standards, including the state of the protocol run and the structure of 
the packet itself. In case of any non-conformance detected, block the packets. Obviously this can be 
achieved easily by hard-coding protocol information into the firewall. However, it should be 
equally obvious that this would be a very inflexible solution: Each new version of a protocol would 
require a re- implementation of the protocol conformance part of the firewall. A far more flexible 
solution will be considered here: The core implementation of the protocol verifier and sanity 
checker will be generic. They are then configured by feeding them with protocol specifications in a 
suitable format. We have decided to use a formal notation frequently used by the European 
telecoms industry to specify communication protocols. This language is called SDL (SDL is also 
used outside Europe). In SDL, we can easily specify the protocols to which we want the observed 
data traffic to conform. From the SDL specification, an extended finite-state machine (EFSM) 
description can be generated automatically to configure the protocol-verifier, which then checks 
observed data traffic against the EFSM description of the relevant protocol. As SDL was created to 
describe conceptually the exchange of messages in communication protocols, it is, unfortunately, 
lacking a rich enough data description language to express conformance of data packets with their 
standardized formats. We are therefore currently working on a separate extension to the SDL 
protocol specification, in which the standardized structure of data-packets can be described. As 
these descriptions will constrain all possible packet formats to the ones allowed by the standards 
documents, we assume that in our case a first-order constraint language will be a suitable extension 
to the SDL specifications. In the constraint language, we will make, for instance, statements about 
how parts of a data packet relate to other parts. This will enable us to implement the packet sanity-
checking component of the firewall in a similarly flexible way as the run-time protocol-verifier (it 
needs to inspect data packets and interpret the corresponding constraints on the packets’ structures). 
This is, however, future work. 

We believe that our work will be beneficial to increase the capability of any packet-filtering 
firewall by better protecting the secure network from attacks based on ill- formed protocol runs or 
data packets. 



  

2 EXAMPLES OF PROTOCOL EXPLOITATIONS 

In this section, we present examples of previous attacks and discuss how they exploited anomalous 
protocol runs, including anomalous packet structures. 

2.1 Ping of Death 

Attackers send fragmented PING requests that exceed the maximum IP packet size of 64KB, 
causing vulnerable systems to crash. The idea behind the Ping of Death (Fyodor, 1996) and similar 
attacks is that the user sends a packet that is malformed in such a way that the target system will not 
know how to handle the packet. Carefully programmed operating systems can detect and safely 
handle abnormal IP packets, but some failed to do so. Besides ICMP ping, also UDP and other IP-
based protocols could transport the Ping of Death. 

2.2 Land Attack 

The land attacks (CISCO, 1997) are also known as IP DoS (Denial of Service) (Fyodor, 1997). The 
land attack involves sending a stream of TCP SYN packets in which the source IP address and TCP 
port number is set to the same value as the destinatio n address and port number (i.e. of the attacked 
host). Some implementations of TCP/IP cannot handle this theoretically impossible condition, 
causing the operating system to go into a loop while trying to resolve repeated connections to itself.  

2.3 SYN flood attack 

The client system begins by sending a SYN message to the server (CERT/CA-1996-21, 2000)). The 
server then acknowledges the SYN message by sending a SYN-ACK message to the client like in 
the figure below. The client then finishes establishing the connection by responding with an ACK 
message. The connection between the client and the server is then open, and the service-specific 
data can be exchanged between the client and the server.  

 

SYN Flooding 

 

The TCP SYN attack exploits this design by send ing SYN packets with random source 
addresses to a victim host. The victim host sends a SYN ACK back to the random source address 
and adds an entry to the connection queue. Since the SYN ACK is addressed to an incorrect or 
nonexistent host, the last part of the three-way handshake is never completed and the entry remains 
in the connection queue until a timer expires, typically within about one minute. By generating such 
SYN packets from random IP addresses at a rapid rate, it is possible to fill up the connection queue 
and deny TCP services to legitimate users. 

2.4 Teardrop attack 

The Teardrop attack (Hoggan, 2000) exploits a vulnerability of the reassembly of segmented IP 
packets. Fragmentation is necessary when IP datagrams are larger than the maximum transmission 



  

unit (MTU) of a network segment. In order to successfully reassemble packets at the receiving end, 
the IP header for each fragment includes an offset to identify the fragment's position in the original 
unfragmented packet. In a Teardrop attack, packet fragments are deliberately fabricated with 
overlapping offset fields causing the host to hang or crash when it tries to reassemble them. The 
normal usage of offsets if presented below:  

 

IP TearDrop Attack - Correct reassembling 

 

However, the teardrop attack sends a fragment that deliberately forces the calculated value of 
the end pointer to be less than the value of the offset pointer. This can be achieved by ensuring that 
the second fragment specifies a FRAGMENT OFFSET that resides within the data portion of the 
first fragment and has a length such that the end of the data carried by the second fragment is short 
enough to fit within the length specified by the first fragment. Diagrammatically, this can be shown 
as follows: 

 

IP TearDrop Attack - incorrect reassembling 

 

When the IP module performing the reassembly attempts to store a copy of the fragment into 
the buffer assigned to the complete datagram, the calculated length of data to be copied (that is the 
end pointer minus the offset pointer) yields a negative value. The memory copy function expects an 
unsigned integer value and so the negative value is viewed as a very large positive integer value. 
The result of such an action depends on the IP implementation, but typically causes stack 
corruption, failure of the IP module, or a system hang. 

2.5 Code Red 

The Code Red worm is a malicious self-propagating code (CERT/CA-2001-23, 2002) that spreads 
surreptitiously through a hole in certain versions of the Microsoft Internet Information Server (IIS). 
Infected systems may experience performance degradation as a result of the scanning activity of 
this worm. The beginning of the Code Red's attack packet looks as follows (CERT/CA-2001-19, 
2001), (CERT/CA-2001-09, 2001): 

GET/default.ida?NNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNN  
NNNNNNNNNNNNNNNNNNNNNNNN  
NNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNN%u9090%u6858%ucbd3 

offset 
2nd fragment 

end 

1st fragment 2nd fragment 

offset 

1st fragment 

end 



  

This shows that binary characters are used in an HTTP header.  However, the HTTP standard 
prohibits binary characters in HTTP headers. 

 

3 THE PACKET VERIFIER 

The purposes of the packet verifier are validating compliance to standards, and validating expected 
usage of protocols. The packet verifier checks the protocol header of packets, verifies packet size, 
checks TCP/UDP header length, verifies TCP flags and all packet parameters, does TCP protocol 
type verification, and analyses TCP Protocol header and TCP protocol flags. In addition, the packet 
verifier contains an inspection engine, including an observer and a main object model, to validate 
expected usage of protocols with SDL (the Specification and Description Language) (ITU-T, 1992) 
specifications: 

 

Components of the Packet Verifier 

 

Using SDL specifications we define the possible behaviours of protocols. While investigating the 
encoded packets, the observer/SDL-parser validates whether or not each sequence of packets 
follows what is required by the SDL specifications. Finally, this packet verifier sends the result of 
validation to the packet-based classification engine. 

3.1 Protocol Specification 

We use an abstract specification of the  TCP protocol, where the state machines accept a superset of 
what is permitted by the standards, and is still sufficient to deal with incomplete protocol runs 
meeting the standards (such as in the case of the SYN flood attack). We describe the TCP state 
machine in this sub-section. 

A TCP connection is always initiated with the three-way handshake, which establishes and 
negotiates the actual connection over which data will be sent. The whole session begins with a SYN 
packet, then a SYN/ACK packet and finally and an ACK packet to acknowledge the whole session 
establishment. Our TCP specification is depicted pictorially below. A new session starts in the 
LISTEN state. Data transfer takes place in the connection ESTABLISHED state. If the TCP 
connection is initia ted from an external site, then the state machine goes through SYN_RCVD and 
ACK_WAIT states to reach the ESTABLISHED state. If the connection is initiated from an internal 
machine, then the ESTABLISHED state is reached through the SYN_SENT state. In order to tear 
down the connection, either side can send a TCP segment with the FIN bit set. If the FIN packet is 
sent by an internal host, the state machine waits for an ACK of FIN to come in from the outside. 
Data may continue to be received till this ACK to the FIN is received. It is also possible that the 



  

external site may initiate a closing of the TCP connection. In this case we may receive a FIN, or a 
FIN + ACK from the external site. This scenario is represented by the states FIN_WAIT_1, 
FIN_WAIT_2, CLOSING, TIME_WAIT_1, and TIME_WAIT_2 states. Our state machine 
characterizes receive and send events. If the connection termination is initiated by an external host, 
note that the TCP RFCs do not have the states CLOSE_WAIT, LAST_ACK_WAIT, and 
LAST_ACK since they deal with packets observed at one of the ends of the connection. In that 
case, it is reasonable to assume that no packets will be sent by a TCP stack implementation after it 
receives a FIN from the other end. In our case, we are observing traffic at an intermediate node, e.g. 
firewall, so the tear down process is similar regardless of which end initiated the tear down. In 
addition, time-out values must be taken into account. They may change according to the security 
policy, however, the default values should be fairly well established in practice. To reduce clutter, 
the following classes of abnormal transitions are not shown: conditions where an abnormal packet 
is discarded without a state transition, e.g. packets received without correct sequence numbers after 
connection establishment and packets with incorrect flag settings. These parts will be checked by 
the SanityChecker. 

 

 

The TCP state machine 

 

3.2 Protocol SanityChecker 

To cover other protocol aspects apart from TCP state specification, we are building a sanity 
checker. This performs layer 3 and layer 4 sanity checks. These include verifying packet size, 
checking UDP and TCP header lengths, dropping IP options and verifying the TCP flags to ensure 
that packets have not been manually crafted by a malicious user, and that all packet parameters are 
correct. In the IP protocol, according to the Internet Protocol Standard (RFC791, 1981), an IP 
header length should always be greater than or equal to the minimal Internet header length (20 
octets) and a packet's total length should always be greater than its header length. IP address checks 
will also be important since land attacks use the same IP address for source and destination. 
According to the TCP standard (RFC793, 1981), neither the source nor the destination TCP port 



  

number can be zero, and TCP flags, e.g. URG and PSH flags, can be used only when a packet 
carries data. Thus, for instance, combinations of SYN and URG or SYN and PSH become invalid. 
In addition, any combination of more than one of the SYN, RST, and FIN flags is also invalid.  

SanityChecker examines every packet within a 10 second window, and at the end of each 
window it will record any malicious activity it sees using syslog. SanityChecker currently detects 
some attacks; all TCP scans, all UDP scans, SYN flood attacks, Land attacks, and ping of death 
attacks. SanityChecker assumes any TCP packet other than an RST may be used to scan for 
services. If packets of any type are received by more than 7 different ports within the window, an 
event is logged. The same criteria are used for UDP scans. 

If SanityChecker sees more than 8 SYN packets to the same port with no ACK's or FIN's 
associated with the SYN's, a SYN flood event is logged. Any TCP SYN packets with equal source 
and destination address and ports are identified as a land attack. If more than 5 ICMP ECHO 
REPLIES are seen within the window, SanityChecker assumes it may be a Smurf attack (CERT, 
1998). Note that this is not a certainty. SanityChecker also assumes that any fragmented ICMP 
packet is bad. This catches attacks such as the ping of death.  To increase the confidence in the 
reported events, the SanityChecker cooperates with the protocol inspection engine, which uses the 
SDL protocol description. Furthermore, when the SanityChecker cooperates with the protocol 
inspection engine, current TCP packet's sequence numbers are matched against a state kept for that 
TCP connection. For example, in the teardrop attack, fragmented packets can be identified by 
packet's IP id and sequence number. The inspection engine will examine all protocol transitions 
triggered by arriving packets and remember IP id and sequences number. So the SanityChecker can 
detect reassembly problems by cooperating with that engine. 

 

4 GENERATION OF A STATE-MACHINE DESCRIPTION 

We made the state-machine specification presented in this section by hand. Our next step will be 
applying SDL and a suitable tool to create such a specification. SDL is an International 
Telecommunication Union (ITU) standard, based on the concept of a system of Communicating 
Extended Finite State Machine (CEFSM) (Hopcroft and Ullman, 1979). To understand how SDL 
can be applied, we address briefly the dynamic semantics of the finite state machine, and an 
underlying SDL model subsequently. 

4.1 Dynamic Semantics of Finite State Machines 

SDL is based on the concept of Communicating Extended Finite-State Machines (CEFSM), which 
communicate with each other and their environment by signals in an asynchronous manner via 
possibly delaying communication paths. These signals are buffered on arrival at a process. A finite 
state machine (FSM) is defined in a standard way as a 4-tuple < S, s0, E, f >, where S is a set of 
states, s0 is an initial state, E is a set of events with their parameter lists, f is a state transition 
relation. However, the construction of FSM, is limited by the state-explosion problem.  An extended 
finite-state machine (EFSM) solves this problem by introducing variables in addition to explicit 
states of the process instance. These variables become implicit states, being able to take on a 
number of values themselves. 

Each EFSM is defined as a FSM with addition of variables to its states: it is a 5-tuple < S, s0, 
E, f, V >, where V is a set of local variables along with their types and initial values, if any. Each 
state in an EFSM is defined by a set of variables, including state names. The transition T of an 
EFSM becomes [< s, v1, …, vn > + input*, task*; output* + < s', v1', … vn' >], where s and s' are the 
names of the states, < v1, v2, …, vn > and < v1', v2', … vn' > are the values of extended variables, n is 
the number of variables, “+” means coexistence, “;” means sequence of events such as tasks and 
outputs, and “[,]” denotes a sequenced pair. The difference between an EFSM and an FSM is that 



  

an EFSM associates each transition not only with input and output actions but also with assignment 
action and condition (Wang, 1993).  

A communicating extended finite-state machines (CEFSM) includes the definitions of EFSMs 
and signals (Ellsberg et al., 1997): it is a 6-tuple < S, s0, E, f, V, X >, where X is a set of signals. In 
CEFSM, signals are responsible for communicating information from within the CEFSM to other 
automata, some of which may be located in the environment of a system.  The signals account for 
the observable behaviour, which is more important than the actual model for a specification. In 
SDL, CEFSM processes use signals to communicate with other CEFSMs and the environment.  

4.2 SDL Underlying Model 

The language SDL is intended to formally specify complex, event-driven, real-time, interactive 
applications involving many concurrent activities that communicate using discrete signals. It is 
especially well suited for specification of communication protocols, reactive systems such as 
switches, routers and distributed systems. SDL has been designed for the specification and 
description of the behaviour of such systems, i.e. the internetworking of the system and its 
environments. SDL allows the hierarchical description of systems. The description starts from a 
construction called system, where functional blocks are inserted. A block is a component composed 
by one or more processes and/or other blocks. A block consists of processes connected by signal 
routes. A process contains a sequential behaviour and concurrency is modelled by a set of 
processes. Each process is a CEFSM. These machines or processes run in parallel. They are 
independent of each other and communicate with discrete messages, called signals. A process can 
also send signal to and receive signals from the environment of the system. The behaviour of a state 
machine is characterized by a set of transitions. A transition to another state or the same state occurs 
whenever an input is consumed. When a process is in a state it accepts input. This input can be a 
signal received by the input port or timers. When a process enters a new state, it means that a 
transition terminates. CEFSM enables decisions to be made in transitions based on the value 
associated with a variable so that the state which follows when a specific input is consumed is not 
only determined by the existing state and input. 

The SDL language supports two equivalent notations: the graphical notation (SDL-GR) and 
the textual notation (SDL-PR). The SDL-GR is a standardized graphical representation of the 
system. SDL elements such as system, block, process, signal etc. are drawn using standardized 
graphical symbols. The SDL-PR is a textual phrase representation of the SDL system, or in other 
words, it is a SDL source code. 

• Process Model The Z.100 ITU-T standard defines that the SDL underlying model is 
CEFSM (Communicating Extended Finite State Machine), where all processes are 
CEFSMs. For each process, a finite number of states, inputs and outputs determine its 
behaviour. Non-determinism allows representing spontaneous transitions, which are 
transitions without any signal causing them. This is useful to describe unpredictable system 
characteristics. In SDL, only one input signal can be consumed/evaluated at each instant. 
This means that each input signal consumed corresponds to one state transition in an SDL 
description. 

• Communication Model The concurrency model used in SDL allows independent and 
asynchronous process operation. There is no guaranteed relative ordering of operations in 
distinct processes, except the ordering created by explicit synchronization among processes 
through the use of shared signals. Shared signal events are then the means by which a 
precise ordering of events in distinct processes can be achieved. 

The communication between processes is reliable. It is assured that the receiving process 
will consume every signal produced by a sender process. However, it is not guaranteed that 
the ordering of the signals generated by all processes is the same as of their consumption.  
This model is adequate to describe events without precise ordering, like systems that can 



  

have their normal flow interrupted. Handshaking or unlimited queues, in practice bounded 
queues, are used to implement the communication model. For both cases, each SDL state 
results in a set of protocol communication signals and area overhead to implement the 
protocol. This characteristic may cause large communication overhead, which can penalize 
the implementation. 

 

4.3 Specification Development 

We present how we specify TCP state transition with CEFSM in this section. A CEFSM is defined 
as a 6-tuple < S, s0, E, f, V, X >, as we mentioned above. 

• S is a set of states 

• s0 is an initial state 

• E is a set of events with their parameter lists 

• f is a state transition relation 

• V is a set of local variables along with their types and initial values, if any 

• X is a set of signals 

For a state, an input event, and a predicate composed of a subset of V, the state transition relation f 
has a next state, a set of output events and their parameters, and an action list describing how the 
local variables are updated. 

The purpose of SDL in our project is to verify whether the TCP transition follows the 
standards. To do this, we made very simple TCP transition using SDL based on Figure The TCP 
state machine. For TCP state transitions, our CEFSM is as follows: 

• S = { listen, syn_rcvd, syn_sent, ack_wait, established, fin_wait_1, fin_wait_2, 
closing, close_wait_1, close_wait_2, time_wait, last_ack_wait, last_ack, closed } 

• s0 = listen 

• E = { send(ip_id, flags), recv(ip_id, flags) } 

• f : { f(listen, recv(ip_id, SYN), ip_seq_per_id = 0) -> (syn_rcvd, ip_seq_per_id = 
ip_seq_per_id + ip_seq, {SYN, ACK}), f(listen, send(ip_id, SYN), SYN, 
ip_seq_per_id != 0) -> (syn_sent, , {}), … } 

• V = { ip_seq_per_id, ip_seq } 

• X = { ACK, SYN, FIN } 

In this SDL specification, Timeout, and other flags e.g., RST, PSH, URG  are not included. 
Timeout and RST, PSH, URG flags can be dealt with in a low-level implementation part. To detect 
packet fragmentation, the SDL specification part can tell the packet sequence and proper flag, and 
the low-level implementation part cooperates with this SDL specification, other flag combinations, 
and the timeout part. Figure \ref{Figure: TCPProcess} shows the StateTransition process which we 
built in SDL. To the graphical SDL-GR spec (Figure Process StateTransition of the TCP Protocol 
State Machine in SDL below), the corresponding textual SDL-PR representation can be found in 
Figure Part of SDL-PR Source in the process StateTransition. 



  

 

Process StateTransition of the TCP Protocol State Machine in SDL 
 
PROCESS StateTransition ; 
NEWTYPE PacketInfo 
STRUCT 
ip  Integer; 
seq Integer; 
flag TCPFlags; 
OPERATORS 
Unexpected: Integer, TCPFlags -$>$ PacketInfo; 
SanityCheck: Integer, Integer -$>$ PacketInfo; 
ENDNEWTYPE; 
DCL pkt  PacketInfo; 
DCL  tcp_id, tcp_seq, tcp_seq_per_id Integer := 0; 
DCL tcp_flag TCPFlags; 
DCL cur_process PId; /* current process */ 
Timer t; START; 
 
NEXTSTATE  idle ; 
STATE syn_sent ; 
INPUT Packet(tcp_id, tcp_seq, tcp_flag) ; 
TASK pkt := SanityCheck(tcp_id, tcp_seq) ;  
DECISION tcp_flag ; 
( ACKFIN ):NEXTSTATE  close_wait_2 ; 
( ACKSYN ):NEXTSTATE  established ; 
( SYN ):   NEXTSTATE  syn_rcvd ; 
ELSE:      TASK pkt := Unexpected(tcp_id, tcp_flag) ; 
NEXTSTATE - ; 
ENDDECISION; 
ENDSTATE; 
STATE syn_rcvd ; 
INPUT NONE; 
OUTPUT ROP(tcp_id, ACKSYN) to SENDER ; 
NEXTSTATE  ack_WAIT ;  
ENDSTATE; 

Part of SDL-PR Source in the process StateTransition 



  

 

5 CONCLUSIONS 

We have discussed protocol anomalies and address a packet verifier model.  The purposes of the 
packet verifier are to validate compliance to standards, and to validate expected usage of protocols, 
especially protocol anomaly detection. Considering performance in real-system, we are 
implementing a SanityChecker to cover protocol header anomalies, and, using SDL, we specify a 
TCP transition system. The specification will then be compiled into an inspection engine program 
for observing packets. This engine will be generic and its behaviour will only be configured by 
feeding it with a specific protocol specification. At the moment, we specified TCP protocol 
transitions. Through this state machine, we will implement the inspection engine. The system 
described in this paper is currently under development.  

To summarize: We believe that this protocol anomaly analysis and the packet verifier model 
will be useful to detect protocol anomalies and verify proper usage of protocols. It will be part of 
the Intelligent Firewall, which we are currently developing in the project Janus (project web-page: 
http://diuf.unifr.ch/people/yoois/Janus/). 
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