
XML DIGITAL SIGNATURE AND RDF

Russell Cloran and Barry Irwin

Rhodes University

{R.Cloran,B.Irwin}@ru.ac.za

ABSTRACT
The XML Signature working group focuses on the canonicalisation of XML, and the syntax
used to sign an XML document. This process focuses on the semantics introduced by the XML
language itself, but ignores semantics which a particular application of XML may add.

The Resource Description Framework (RDF) is a language for representing information
about resources on the Web. RDF has a number of possible serialisations, including an XML
serialisation (RDF/XML), popularly used as the format for exchanging RDF data. In general,
the order of statements in RDF is not important, and thus the order in which XML tags occur in
RDF/XML can vary greatly whilst still preserving semantics.

This paper examines some of the issues surrounding the canonicalisation of RDF/XML and
the signing of it, discussing nesting, node identifiers and the ordering of nodes. Existing RDF
serialisation formats are considered as case studies of partially canonical RDF formats.



XML DIGITAL SIGNATURE AND RDF

1 INTRODUCTION

On an increasingly hostile Internet, document exchange is vulnerable to interception and tam-
pering. Documents exchanged over the Internet should therefore be verified for integrity and
authenticity through the use of strong cryptographic methods such as the increasingly common
notion of digital signatures, which provides a means of doing this. The XML Signature working
group[1] endeavours to “develop an XML compliant syntax for representing the signature of Web
resources and portions of protocol messages (anything referencable by a URI)”[1]. This includes
signing portions of (or whole) XML documents, and their work includes work on canonical
XML[2]. The Resource Description Framework (RDF)[3] is a core technology in the emerging
Semantic Web[4], which will enable different forms of distributed processing, e-commerce, and
more powerful and pervasive agents on personal devices. It is thus foreseeable that a large num-
ber of users will want to sign and verify signatures of RDF data in the near future. Only a small
amount of work has been done on signing RDF documents and RDF graphs. We investigate some
of this work, beginning with an introduction to RDF, XML digital signatures, and an overview
of the problems we encounter when trying to sign RDF documents.

This is followed by some of the concepts needed in order to successfully sign RDF. We then
go on to examine some work which solves the problem of RDF signatures either partially or
completely, whether by design or coincidence.

1.1 Resource Description Framework
RDF “is a language for representing information about resources in the World Wide Web”[5].
RDF is designed to have a very simple data model, which makes adoption of the standard at-
tractive to developers, and accessible to end users. In RDF resources being described have a set
of properties, each of which has a value. These values can either be literal values or another
resource. Conceptually, resources (or literal values) can be regarded as nodes, and the properties
as edges. This data model leads to a directed, labelled graph. This model can also be thought
of as a set of individual statements, each of which have a subject, a predicate (property) and an
object (value). Figure 1 shows the relationship between the set of statements, and the labelled
graph which they describe.

1.2 RDF/XML
The XML serialisation of RDF[6] provides a syntax for RDF based on the popular, robust, in-
ternationalised language, XML. RDF uses Uniform Resource Identifiers[7] (URIs) to identify
resources. These are encoded using the XML namespace rules[8]. These rules use QNames
(qualified names) as the XML tag, and each QName consists of a prefix (the XML namespace)
and a local part. The local part is appended to the URI of the XML namespace to obtain the
full RDF URI reference. The RDF/XML syntax is often called a “striped syntax”[9, 5] because



Figure 1: A set of RDF triples map naturally to a labelled, directed graph[5]

Figure 2: RDF striped syntax[9]

when reading the serialisation, tags are encountered in an alternating pattern between the nodes
and arcs. The striping concept is illustrated in Figure 2.

The logical organisation of an XML document is a tree format. This encoding therefore
creates a target tree structure for the RDF serialisation tool. In order to map a graph into a
tree in all cases, it is necessary to create links between nodes within the document. Such links
may be created either by named blank nodes, or by internal document references, using the
RDF ID property (an XML Schema ID, similar to the ID attribute in (X)HTML). Because a
graph can be mapped into a tree in a number of different ways, and because the order in which
statements appear in the RDF/XML document is not always important, serialising an RDF graph
into RDF/XML may lead to a number of different, yet valid, serialisations.

RDF/XML allows linking between nodes at arbitrary places of the tree, and an RDF/XML
document therefore often resembles the graph concept of the RDF model more closely than it
does the set of individual statements to the human reader. This is also true because for each



resource, its properties may be listed without stating what the resource is a second time, allowing
a number of statements with the same subject to be grouped into one part of the document. This
freedom of expression is the cause of some of the problems which occur when trying to sign
RDF/XML documents, as the XML processor has no concept that the variations in the XML
documents convey the same meaning for the application consuming the RDF parser.

1.3 XML Digital Signature
XML Digital Signature[1] is a W3C recommendation, and Internet draft standard (RFC), which
provides a way to sign arbitrary digital information, and represent this signature in XML. XML
digital signature was designed to allow any data which can be referenced as a URL to be signed,
and it thus allows the signing of XML sub-documents through document fragment identifiers.

The process of generating an XML signature follows the steps described in [1]:
1. Generate the reference

(a) Apply the transforms, as determined by the application, to the data object

(b) Calculate the digest value over the resulting data object

(c) Create a REFERENCE element, including the (optional) identification of the data ob-
ject, any (optional) transform elements, the digest algorithm and the DIGESTVALUE.

2. Generate the signature

(a) Create SIGNEDINFO element with SIGNATUREMETHOD,CANONICALIZATIONMETHOD
and REFERENCE(s)

(b) Canonicalize and then calculate the SIGNATUREVALUE over SIGNEDINFO based
on algorithms specified in SIGNEDINFO

(c) Construct the SIGNATURE element that includes SIGNEDINFO, OBJECT(s) (if de-
sired, encoding may be different than that used for signing), KEYINFO (if required),
and SIGNATUREVALUE

We see here that XML signature provides opportunity for the application (XML document con-
taining RDF data in our case) to create a canonical version of its data prior to signature calcula-
tion.



1.4 XML Canonicalisation
Something which is canonical has been “reduced to the simplest and most significant form possi-
ble without loss of generality” or is “conforming to the orthodox or recognised rules”[10]. XML
Canonicalisation “refers to the process of applying the XML canonicalisation method to an XML
document or document subset”[2].

XML Canonicalisation allows two XML documents to be compared for identity in a bitwise
manner, after they have both been transformed into the canonical form. This is the crucial first
step in allowing any type of digital signatures (PGP is another example which is distinct from
XML digital signatures) to be applied across XML documents, as a signing operation requires
that the initial input and the input to be checked are identical.

The basic process of XML canonicalisation can be broken down into 4 steps, as described in
[2]:

1. Normalize line feeds

2. Normalize attribute values

3. Replace CDATA sections with their character content

4. Resolve character and parsed entity references
Notably, the process of creating a canonical XML document does not explicitly mention about a
canonical document form. It should be assumed that canonical XML should be generated from
a canonical document form, if more than one exists.

1.5 Signed RDF
Canonical XML only addresses the semantics introduced by XML and not the application which
is using it. RDF/XML introduces semantics which mean that a number of different XML doc-
uments can represent the same RDF model, due to the flexibility of the RDF/XML serialisation
standard. Some of the factors in RDF/XML that cause this to happen are:

• Typed nodes are optional (see Section 2.3)

• An RDF graph may be broken into a tree in a number of ways (see Section 1.2)

• Order is not always important (with some exceptions, such as the SEQ property)
The consequence of this is that without some means to create a canonical RDF/XML document
from any model, RDF documents cannot easily be compared for identity unless some means of
a canonical serialisation is created.

2 CANONICAL RDF

2.1 Levels of semantics
In “Towards the Semantic Web” Broekstren, Kampman and van Hermelen[11] suggest that RDF
may be queried at three levels: the syntax, structural and semantic levels. We propose that these
basic distinctions may also be applied to the process of creating a canonical RDF document.
These are discussed below in a top down fashion.



2.1.1 Semantic level
The semantic level is the highest level of understanding that the application has, and the model
is divorced furthest from its physical representation. At this level RDF is considered as one or
more labelled graphs, with some predefined semantics. At this level, issues such as blank node
identifiers are not considered, but we consider rather the structure of the graph.

Two graphs are said to be isomorphic if there is a one-to-one correspondence between their
vertices, and a one-to-one correspondence between the edges joining corresponding vertices.
Two RDF graphs can therefore said to be equivalent if they are found to be isomorphic. Following
this, testing RDF graph equality and graph isomorphism have equivalent complexity, as discussed
by Carroll in [12].

Testing for graph isomorphism is a problem for which no polynomial time solution has been
found, nor has it been proven that it is NP-complete[13]. Carroll[14] notes that it is therefore the-
oretically possible to verify the signature of an arbitrary RDF graph in polynomial time. Carroll’s
methods for improving on this are discussed in section 2.2.

At this level we refer to the RDF data as a model or a graph, as compared to the syntactic
level, where we refer to the serialised format as an RDF document.

2.1.2 Structural level
At the structural level, RDF is considered as a set of triples. The semantics of the graph are
broken down into a series of individual node-arc-node relationships. Other than the knowledge
that these statements are part of the same RDF model, they are unrelated. At this level, the
problem of blank node identifiers arises, as making a link from a labelled node to an unlabelled
node and then from the unlabelled node to another node needs to have some sort of link. This
link is created using blank node identifiers. The canonicalisation method described by Carroll in
[14] operates chiefly at the structural level, although the specific implementation described relies
on the N-Triples serialisation described in the RDF Test Cases[15].

Renaming of blank node identifiers and the ordering of triples for use at the syntactic level
are operations which occur at the structural level. The first operation requires some knowledge
of the semantic level, namely, when renaming a blank node it is necessary to rename all blank
nodes with the same identifier in order to retain the semantics. This particular operation is the
most difficult part of any of the processes of creating a canonical RDF model or document,
and is essentially part of the process of testing for isomorphism. An example of this process is
described in [14], and discussed in Section 2.2. Ordering of the triples is also discussed in [14],
but is a relatively straightforward process of lexically ordering the triples that make up the graph
by subject, predicate and then object.

2.1.3 Syntactic level
At a syntactical level we consider the serialised RDF. In the case of RDF/XML, this would be
the XML document that is produced by serialisation. The flexibility of the RDF/XML means
that it is likely that only a subset of the RDF/XML features will be used, as is done in R3X[16],
discussed in Section 2.3. Because the result of an RDF/XML serialisation is an XML document,



we should also apply the XML canonicalisation rules described in 1.4 in order to produce a
canonical XML document, either as part of the serialisation process, or after it.

The process of signing the document also happens at this level, since some sort of serialisation
of the RDF model is required in order to sign it. Efforts such as the WOT vocabulary[17] and
existing XML signature solve this problem adequately, if we can obtain a canonical serialisation.

2.2 Carroll’s canonicalisation method
The techniques described by Carroll in [14] are designed to obtain a canonical version of an RDF
graph. The N-Triples serialisation is used both for processing and the ultimate output format, as
described in the paper. The method arguably operates at all three of the levels we consider above.
Most of the difficult work is done at the structural level in order to test that two graphs are the
same at the semantic level. The general outline of Carroll’s algorithm is:

1. Replace blank nodes (in subject and object positions) with a placeholder, storing the orig-
inal blank node identifier

2. Sort the triples lexically

3. From top to bottom, replace blank nodes in statement subjects with an incrementing blank
node identifier, ensuring all instances of the same blank node get replaced with the same
new identifier, if the statement (with placeholder blank node) is not the same as the previ-
ous or following statement (with placeholder blank node).

4. Repeat the previous step for blank nodes in statement objects
This process is deterministic for a subset of RDF models. A further “precanonicalisation” step
is required to ensure that this process works for all RDF models. This step involves inserting
statements which add no meaning to the document between carefully selected nodes. This pre-
canonicalisation arguably changes the some of the semantics of the graph.

These algorithms described by Carroll provide a useful step in obtaining a canonical RDF
model, although a change from the N-Triples syntax is required in order to harness the power
and interoperability introduced by the XML language serialisation of RDF.

2.3 R3X
Redland Restricted RDF/XML (R3X) is a subset of the RDF/XML serialisation created by
Morten Frederiksen. There are currently two implementations of R3X: one as PHP code which
output R3X directly from a stream in the Redland framework, and another as an XSL transform
which takes as input an RDF/XML document which is output by the default Redland RDF/XML
serialisation component. R3X is, in fact, less restricted than the default output of the Redland
library’s serialisation library, which only uses a very limited subset of the productions available
in RDF/XML. R3X was originally designed as a means of simplifying XSL stylesheets which
converted RDF to HTML for user display, and so is not entirely designed for the goal of obtain-
ing a canonical RDF document. It is an interesting observation nonetheless, as it shows some of
the key ideas which may be useful in creating a canonical RDF document.



When it is considered that R3X is a serialisation procedure, it is notable that it is a bridge
between the structural and syntactic levels described in Section 2.1. It does not operate at one of
the levels, but rather provides the transition from the higher level to the lower.

Observing the output of R3X provides some insight to the production of an RDF/XML doc-
ument which Carroll’s method doesn’t, since Carroll’s method is not concerned with RDF/XML
at all.

Firstly, it is observed that grouping by subject (obtained automatically by ordering lexically
sorting statements) drastically shortens the document, and improves human readability, although
this should not be considered an important goal. This has a welcome side effect in that statements
always occur at the “top level” of the document, eliminating nesting issues.

Secondly, XML namespaces are declared for every node produced in the R3X serialisation.
Since the Canonical XML recommendation[2] does not alter namespace declarations, it is impor-
tant that a canonical RDF serialisation outputs namespace information in a deterministic manner.

Lastly, we note that the R3X output does not in any way order sub-nodes, unless they are
part of an RDF SEQ. Such a result is expected to occur naturally as a side effect of an operation
similar to Carroll’s algorithm, or is a trivial step which can be performed prior to serialisation.

3 REAL WORLD

It is interesting for us to note that the use of cryptography together with RDF in the field has
been limited to one application which we have seen. We mentioned earlier the WOT (Web of
Trust) vocabulary, which uses PGP (Pretty Good Privacy) as a cryptographic basis. WOT allows
PGP signing events to be described, including the association of a signature with a document, a
person with a signing event, and a signing event with a signature.

The WOT vocabulary has a certain appeal to the “hacker” community, who are often early
adopters of new technology. It is available now, and uses the well known and popular technology,
PGP. However, we have only noted one use of the WOT vocabulary, Edd Dumbill’s FOAFBot1.
The FOAFBot is an “IRC Community Support Agent”, and is designed to provide answers to
users of an IRC channel. The FOAFBot also attributes its sources by name, if there is crypto-
graphic proof that the source made the statement.

<edd> foafbot, edd’s name
<foafbot> edd’s name is ’Edd Dumbill’, according to Dan Brickley, Anon35,

Niel Bornstein, Jo Walsh, Dave Beckett, Edd Dumbill, Matt Biddulph, Paul Ford
Notice “Anon35”, a person who has made a statement that there is a person with the IRC nick-
name “edd” who has the full name “Edd Dumbill”, but has not backed this up with a PGP
signature. Other users have signed the document in which the statements supporting the fact
occurs, and so are attributed by name.

We speculate that the very low usage rate of cryptography together with RDF occurs for three
main reasons. Firstly, the Semantic Web at this point in time is reminiscent of the early days of
the Internet. Most of the users are researchers who are more interested in experimental results
rather than securing their communications. Secondly, the marginal gain from providing signed

1http://usefulinc.com/foaf/foafbot



RDF data is low, as not many agents can process either XML Digital Signature or statements
as they occur in the WOT vocabulary. We again speculate that a wider uptake of Semantic Web
technologies will ensure that cryptography is used where required.

4 CONCLUSION

We conclude with some thoughts on signing RDF data, particularly RDF/XML documents.
A breakdown of the levels of RDF into syntax, structure and semantics is does not give a

strictly accurate picture of where a particular technique falls when dealing with canonical RDF,
but it gives us a good idea of the sorts of operations that it is performing. Methods which operate
at the syntactic level will often have to have access to the structure, and methods which alter the
semantic level will change the structure of the model.

Creating canonical RDF can be broadly broken down into two categories: creating a canoni-
cal version of the model and creating a canonical serialisation of the model. Creating a canonical
version of the model involves operations such as renaming blank nodes, ordering triples, and in-
serting meaningless statements if necessary, while creating a canonical serialisation of that model
involves a normal serialisation procedure, but uses only a subset of the RDF/XML specification.

There are well defined document signing standards such as PGP or even XML Digital Signa-
ture which may be used today to sign RDF/XML (or other serialisations of RDF) for assurance
at the document level. XML Digital Signature may even allow the signature of components
of an RDF document. Informal observation leads us to believe that these standards are not in
widespread usage.

Creating a canonical RDF/XML serialisation is possible, and is a necessary step for the suc-
cess of the Semantic Web.

References

[1] D. Eastlake, J. Reagle, and D. Solo, (eds), “XML-Signature syntax and processing,” Tech.
Rep. Internet RFC 3275, IETF, Mar. 2002. http://www.ietf.org/rfc/rfc3275.txt.

[2] J. Boyer, “Canonical XML.” http://www.w3.org/TR/xml-c14n.

[3] E. Miller, R. Swick, and D. Brickley, (eds), “RDF and RDF Schema,” 2003.
http://www.w3.org/RDF/.

[4] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Scientific American,
vol. 284, pp. 34–43, May 2001. http://www.sciam.com/2001/0501issue/0501berners-
lee.html.

[5] F. Manola and E. Miller, (eds), “RDF primer.” W3C Recommendation, 2004.
http://www.w3.org/TR/rdf-primer/.

[6] D. Beckett, (ed), “RDF/XML syntax specification (revised).” http://www.w3.org/TR/rdf-
syntax-grammar/.

[7] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): Generic
syntax,” Tech. Rep. Internet RFC 2396, IETF, 1998. http://www.ietf.org/rfc/rfc2396.txt.



[8] T. Bray, D. Hollander, and A. Layman, (eds), “Namespaces in XML,” Jan. 1999.
http://www.w3.org/TR/REC-xml-names.

[9] D. Brickley, “RDF: Understanding the striped RDF/XML syntax,” Aug. 2002.
http://www.w3.org/2001/10/stripes/.

[10] “WordNet 2.0.” http://wordnet.princeton.edu/cgi-bin/webwn2.0?stage=1&word=canonical.

[11] J. Davies, D. Fensel, and F. van Harmelen, eds., Towards the Semantic Web: Ontology-
Driven Knowledge Management, ch. 5. John Wiley and Sons, 2003.

[12] J. Carroll, “Matching RDF graphs,” in Proceedings of the First International Semantic Web
Conference (I. Horrocks and J. Hendler, eds.), pp. 5–15, 2002.

[13] S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory with
Mathematica, pp. 181–187. Addison-Wesley, July 1990.

[14] J. J. Caroll, “Signing RDF graphs,” Tech. Rep. HPL-2003-142, Hewlett-Packard, Jul 2003.

[15] J. Grant and D. Beckett, (eds), “RDF Test Cases.” W3C Recommendation, 2004.
http://www.w3.org/TR/rdf-testcases/.

[16] M. Frederiksen, “Transforming RDF/XML with XSLT.”
http://www.wasab.dk/morten/blog/archives/2004/05/30/transforming-rdfxml-with-xslt.

[17] D. Brickley, “wot 0.1.” http://xmlns.com/wot/0.1/.


