
INTEGRATING SECURE RTP INTO THE OPEN SOURCE VOIP PBX
ASTERISK

Bradley Clayton, Barry Irwin, Alfredo Terzoli

Computer Science Department
Rhodes University

Grahamstown

g01c2974@campus.ru.ac.za, b.irwin@ru.ac.za a.terzoli@ru.ac.za

ABSTRACT
Implementations of Voice over Internet Protocol (VoIP) have focused, up to now, mainly on the need
to transport data in real-time, often at the expense of security. The neglect of secure VoIP is often
intentional, as developers are striving to minimise overheads and delays. The Secure Real-Time Pro-
tocol (SRTP) has the potential to secure real-time streams without exacting too high a performance
price. SRTP is the addition of security to the audio/video profile used in the Real-Time Transport Pro-
tocol (RTP). SRTP adds confidentiality, integrity and optionaly authenticity to RTP media streams.
This paper focuses on the integration of SRTP into Asterisk, an open-source VoIP PBX. SRTP support
has recently been added to Asterisk by Mikael Magnusson. This paper analyses Magnusson’s imple-
mentation, contrasting it to a proof-of-concept implementation developed independently at Rhodes
University. The interoperability of SRTP implementations cannot be taken for granted, given the rel-
atively recent standardization of the protocol, and so Magnusson’s implementation is tested against
another SRTP implementation. Finally, the paper highlights a major shortcoming in Magnusson’s
implementation, namely that the exchange of encryption keys is done in the clear. It concludes by
proposing possible solutions, such as TLS, IPSec and MIkey.

KEY WORDS
VoIP, Secure RTP, Multimedia Internet Key Exchange (MIKey) Asterisk

INTEGRATING SECURE RTP INTO THE OPEN SOURCE VOIP PBX,
ASTERISK

1 INTRODUCTION

VoIP implementations focus on the need to transport data in real-time, concentrating on codecs and
low latency, often at the expense of security. The neglect of security is intentional: to minimise over-
heads and delays, security is acknowledged but is deemed out the of the scope of the implementation
or marked as future work.

In preparation for an investigation into the performance of VoIP security methods [1], secure
VoIP implementations had to be written where none were available. The Secure Real-time Transport
Protocol (SRTP) [2], had only been implemented in peer-to-peer VoIP clients, such as a SIP client
called MiniSIP [3]. Our research required SRTP to be tested in a client-server architecture where
the server also was SRTP-enabled. Therefore, we implemented SRTP into Asterisk, the Open Source
PBX [4]. (Asterisk was chosen because of its compatibility over a wide range of VoIP protocols as
well as our good knowlege of it.) Shortly after completing our implementation, Mikael Magnusson
completed an equivalent implementation.

The structure of the paper is as follows. Section 2 introduces SRTP and explains its design and
suitability for VoIP applications. Section 3 describes a library which provides SRTP functionality
and was used for our integration of SRTP into Asterisk. Appropriate areas of the Real-time Trans-
port Protocol (RTP) [5] structure within Asterisk, for SRTP integration, are discussed in section 4.
Magnusson’s contribution and our own local implementation are discussed in section 5. SRTP pro-
vides confidentiality, integrity and authentication, however, another mechanism for key exchange is
required. An insecure key exchange compromises all of the security provided by SRTP. Appropri-
ate methods of key exchanges are discussed in section 6. Finally, section 7 successfully tests the
interoperability of Magnusson’s implementation with existing SRTP clients.

2 THE SECURE REAL-TIME TRANSPORT PROTOCOL

Unless otherwise stated, this section is based on the SRTP RFC [2]. The SRTP protocol is merely a
secure audio/video profile for RTP [6] that offers confidentiality, integrity and authentication for video
and audio streams. The secure profile is designed to exist between the RTP application and underlying
transport layers. Media packets moving down an RTP stack are intercepted andsecured, into SRTP
packets, before being passed to the transport layer. Conversely, SRTP packets moving up the stack
areunprotected,into RTP packets, and passed to the application. Real-Time Control Protocol (RTCP)
packets are converted into Secure Real-Time Control Protocol (SRTCP) packets in the same way.

The aim of SRTP is to ensure the confidentiality, integrity and authenticity of RTP and RTCP
payloads, hence addressing the security needs for real-time multimedia applications. This is achieved
through a framework that allows for the upgrade to new cryptographic algorithms, while maintaining
a minimal overhead. The SRTP RFC lists the Advanced Encryption Standard (AES) and NULL (or

no encryption) ciphers as being appropriate . Scoping the selection of cryptography algorithms to
ones which exhibit low computational costs and a small footprint make SRTP ideal for mobile or
small embedded devices, such as, telephone handsets.

SRTP currently uses HMAC-SHA1 [7] for authentication and integrity. SRTP is vulnerable to
payload adjustment and source spoofing when message authentication is not utilized. For this reason,
SRTP message authentication must always be enabled. SRTP should also be protected with a strong
authentication code. However, the sole use of integrity protection will not protect communications
from replay attacks.

SRTP counters replay attacks through the use of a sliding window and Replay List. The Replay
List contains an index of all packets which have been received and authenticated. Upon receiving a
packet, its index is compared to a list of recent packet indexes. The packet is rejected if its index is
smaller then the index of the last received packet, less the size of the sliding window. The sliding
window allows the protocol to use a fixed amount of memory for replay.

SRTP uses stream ciphers which are vulnerable to statistical attacks if an attacker assumes the
presence of formatting bits encrypted within an intercepted payload. The length of a stream cipher
payload is always known, making it possible to use the known formatting bits and their position to
derive the corresponding bit of the key-stream. However, it is claimed in RFC 3711 that an attacker
will not be able to use these known bits to deduce the rest of the stream if the cipher is secure.

SRTP avoids denial or service attacks by using seekable stream ciphers. This means that a cipher
is able to address any position in its key-stream. This feature enables the encryption or decryption of
a packet without having to depend on preceding packets.

3 AN SRTP LIBRARY

The integration of SRTP into Asterisk, discussed in section 5, utilised a library called libSRTP [8].
The library was selected for the following reasons:

• Like Asterisk, the library is open source, making its inner workings easily accessible.

• Also, like Asterisk, the library is written in C. This allows us to perform the integration without
the need for language wrapping.

libSRTP [8] is maintained by David McGrew (also co-author of RFC3711) from Cisco Systems.
The library is licensed in the open source domain with its aim being to promote the use of SRTP
in various applications. The library supports all mandatory features defined in the SRTP RFC [2].
However, some of the optional features, including the list below, are not supported as of version 1.4:

• The Master Key Index (MKI).

• Key derivation rate other than zero.

• The F8 mode of AES.

• Anti-replay lists with sizes other than 128 packets.

• The use of the packet index to select between master keys.

When securing RTP and RTCP data, the data is categorized into sessions and streams: more than
one concurrent stream is termed a session. Cryptographic options, keys, and stream addressing are
configured through policies. A stream is configured by the instantiation of a policy which is uniquely
identified by a Synchronization Source Identifier (SSRC). The SSRC field is already used in the
RTP protocol to identify multiple streams on a single host. This enables the SRTP engine to match
incoming or outgoing RTP packets with stream policies. libSRTP allows the developer to create
multiple streams within a single session. A session is created when more than one stream and stream
policy exists (libSRTP represents a session as a linked list of stream policies [8]). Policies are defined
in the library by a data structure containing the following fields:

• CIPHER_TYPE, an integer representing the type of cipher that should be used for confidentiality.

• CIPHER_KEY_LEN, the length of the cipher key in octets.

• AUTH_TYPE, denoting the authentication function to be used.

• AUTH_KEY_LEN, length of the authentication function key in octets.

• AUTH_TAG_LEN, length of the authentication tag in octets.

• SEC_SERV, a flag representing security services to be applied.

Linked list nodes are described by the following structure:
-
Type struct
srtp_policy_t {
ssrc_t S S R C

crypto_policy_t R T P

crypto_policy_t R T C P

octet_t * K E Y

srtp_polity_t * N E X T

}

The SSRCvalue, as mentioned, associates a policy to a secure stream. TheRTP andRTCP values
hold the policies for the real-time payload and real-time control data.KEY points to memory which
contains the cryptography key for encrypting or decrypting the associated RTP and/or RTCP data.
Lastly, theNEXT pointer addresses the next policy instance, or NULL to denote the end of the list.

libSRTP is initialized when theSRTP_INIT () function is called. To create a new SRTP session,
SRTP_CREATE() is called and passed a session pointer and a populated policy structure. Once a
session is created, streams can be added to the session by calling theSRTP_ADD_STREAM() function,
passing it the session pointer and new stream policy. A session or stream is de-allocated when the
SRTP_REMOVE_STREAM() andSRTP_DEALLOC() functions are called and passed a session pointer
andSSRCvalue.

Once a session with one or more stream policy is in place, RTP and RTCP data can be protected.
TheSRTP_PROTECT() function is responsible for the authentication and encryption of RTP and RTCP
packets streams. For each RTP or RTCP packet, the function is passed a session pointer, RTP data
pointer (addressing the packet to be protected) and the length of the packet. The function returns

the RTP pointer addressing the authenticated and encrypted packet. Should the function fail, an
appropriate error code is returned which can be looked up in a table [8].

Similarly, at the receiving end of an RTP or RTCP stream, theSRTP_UNPROTECT() function is
used to authenticate and decrypt a packet. For each RTP or RTCP packet, the function is passed a
session pointer, RTP data pointer addressing the packet to be unprotected and a pointer to the length of
the packet. The function returns the RTP pointer addressing the authenticated and encrypted packet.
The un-protect function will authenticate each packet and return anERR_STATUS_AUTH_FAIL code if
the packet has been tampered with. Packet replay is detected when theERR_STATUS_REPLAY_FAIL

code is returned.

4 ASTERISK

Asterisk performs all RTP and RTCP processing in theRTP.C file, while Session Initiation Protocol
(SIP) [9] and Session Description Protocol (SDP) [10] handshakes are defined inCHAN_SIP.C. The
following were marked as important functions in chan_sip.c:

• SIP_CALL () when a SIP call is to be initiated from the PBX, this function starts the SIP and
SDP handshakes.

• ADD_SDP() adds fields to the SDP handshake. SDP fields are used to negotiate specifics such
as the audio codec, video codec and, IP and port addressing to be used during a call.

• PROCESS_SDP() processes SDP handshake. The function attends to incoming SDP fields and
creates the RTP session appropriately.

• SIP_REGISTRY_DESTROY() un-registers a sip device from the PBX.

• SIP_REGISTER() registers a SIP device on the PBX.

The following were found to be important functions within the asterisk RTP stack:

• AST_RTP_INIT () initializes the RTP system and calls theAST_RTP_RELOAD() function. (This
function is called when Asterisk is started.)

• AST_RTP_RELOAD() is called when the RTP stack within Asterisk is reloaded.

• AST_RTP_NEW_WITH_BINDADDR() is called and passed the destination’s IP address when
creating a new RTP session. The SIP and SDP systems in Asterisk are responsible for obtaining
the destination’s IP address and RTP ports. This function creates an RTP session.

• AST_RTP_STOP() is executed when an RTP session is not needed any more.

• AST_RTP_RESET() sets all the default RTP session attributes to their initial values, effectively
recreating the RTP session.

• AST_RTP_RAW_WRITE() is called when there is an RTP packet that needs to be sent to an RTP
receiving node. This function is responsible for passing RTP packets to the computer’s network
stack.

• AST_RTP_READ() is called when the RTP stack has received a packet. The read function
accepts RTP packets, checks for basic data corruption and passes their contents to Asterisk
where a decoder converts RTP data into an encoded format for retransmission to the next node.

These functions were marked as areas where libSRTP could be used to create or destroy secure ses-
sions and protect or un-protect RTP streams.

5 INTEGRATING SRTP INTO ASTERISK

In the following discussion, all comments are related to the Rhodes University implementation un-
less otherwise stated. Implementation begun by making libSRTP available to Asterisk. This caused
conflicts with the Inter-Asterisk Exchange (IAX) [11] system within Asterisk, due to cryptography
function name clashes in IAX and libSRTP. To resolve this, the convention of appending Asterisk
specific functions withast_was used to rename the functions within the IAX system. While this
resolved the issue, the solution makes re-implementation of libSRTP into a newer version of Asterisk
complicated. Each implementation would require multiple patches to rename the IAX cryptography
functions and update areas of code where these functions are called. Magnusson’s created a resource
module, RES/RES_SRTP.C, which contained all the calls to libSRTP, avoiding the common name
problem. (Our implementation is intended to be a proof-of-concept and temporary implementation
of the SRTP protocol for Asterisk, while Magnusson’s is suitable for redistribution. The use of static
cryptography keys is sufficient for our application as we are, ultimately, merely interested in the per-
formance cost of the security addition. Magnusson implemented a key exchange within the Session
Description Protocol (SDP) which is discussed in section 6.)

The library initialization and policy configuration of each implementation take place at different
times during the setup of a call. Our implementation configures the library and policies when the RTP
stack in Asterisk is initialised. Magnusson does the initialisation and policy creation within the Ses-
sion Description Protocol (SDP) handshake. Firstly, theAST_RTP_RELOAD() function is used to ini-
tialize libSRTP. This placement ensures that libSRTP is initialized when Asterisk is started and when
the RTP system is reloaded. Policy creation is placed in theAST_RTP_NEW_WITH_BINDADDR()
function. Each SRTP session is created with the following attributes:

• The SSRC value assigned by Asterisk is used to address the new SRTP session.

• The cryptography key is assigned statically or after a key exchange. (This is explained further
in section 6.)

• The cypher type is set to AES_128_ICM, currently the strongest cipher available to libSRTP.

• For authentication, the function is set to HMAC_SHA1.

• Lastly, the services for the policy are set to perform confidentiality and authentication.

TheAST_RTP_STOP() function is a convenient place where SRTP sessions can be removed once they
are no longer needed. Likewise, theAST_RTP_RESET() function is used to recreate SRTP sessions.

Both implementations perform the protection of RTP packets in a similar fashion. Our implemen-
tation intercepts the RTP packet within theAST_RTP_RAW_WRITE() function. Immediately before

an RTP packet is sent to the network stack, its contents are moved to a larger buffer. The buffer
is passed to theSRTP_PROTECT() function where it is encrypted and an authentication header is
added. The larger buffer allowsSRTP_PROTECT() to increase the size of the RTP payload with-
out running out of memory. The buffer is converted from an RTP payload into an SRTP payload.
This buffer is then passed to the network stack to be sent to its destination. Magnusson makes
the same call toSRTP_PROTECT(), except within theRTP_SENDTO() function which is called by
AST_RTP_RAW_WRITE().

On the receiving end of an SRTP stream, theAST_RTP_READ() function is called and passed
a pointer to an SRTP packet. Before any processing, the packet is again copied into a buffer. The
SRTP_UNPROTECT() function is called and passed the buffer which is decrypted, converting the SRTP
payload into an RTP payload.SRTP_UNPROTECT() also checks the authentication header of the SRTP
payload to ensure its integrity. Any authentication error is then logged and the packet is discarded. Fi-
nally, a pointer is addressed to the contents of the new buffer, which is then used by Asterisk for further
processing. Magnusson performs the same call toSRTP_UNPROTECT(), from theRTP_RECVFROM()
which is called byAST_RTP_READ().

Figure 1:Simple flow of events when creating SRTP streams.

Green - Asterisk events

Red - SRTP events.

6 SECURING THE KEY EXCHANGE

As already mentioned in the previous section, our integration of SRTP into Asterisk makes use of
static cryptography key assignment. This method is secure as long as the key is never transmitted
in an insecure channel, but is not feasible should we wish to periodically change the key. Ideal key
management for our implementation would involve a key exchange while a call is being setup. In this
section we focus exclusively on Magnusson’s implementation, which allows for such a key exchange
to take place. Magnusson has implemented Secure Descriptions (sdescriptions) [12], a standard that
defines how cryptography information can be shared during the SIP/SDP handshake of a VoIP session
in order to instantiate SRTP communication. The encryption type, message authentication method and
cryptographic key is sent by the caller to the callee during the SDP handshake.

rtpmap =0 PCMU/8000
rtpmap =97 iLBC/8000
rtpmap =3 GSM/8000
rtpmap =8 PCMA/8000
rtpmap =101 telephone-event/8000
silencesupp =off

crypto =1 AES_CM_128_HMAC_SHA1_80 inline:+dHGQ4ngRj7oz3kAnH0PmCx.......

The segment above is taken from an SDP packet. TheRTPMAP lines describe a list of audio codecs
supported by the caller.SILENCESUPP=OFF declares that the caller will not make use of silence
suppression. TheCRYPTO line tells the callee that the caller will be using 128bit AES to encrypt
RTP payloads. It also defines HMAC SHA1 as the algorithm to authenticate RTP payloads. Finally,
it defines the encryption key as “dHGQ4ngRj7oz3kAnH0PmCxFO7VtgJIqHcieXFyf ”. The
sdescriptions protocol allows us to change encryption methods and, more importantly, it transports
fresh encryption keys for every call. However, SIP and SDP communication is done in clear text,
exposing the method and key we exchanging. This introduces a third and final requirement: a method
to secure the key exchange.

This requirement could be addressed by encapsulating the SIP and SDP handshake into another
secure protocol, of which many are available but none is particularly appropriate. The Encapsulated
Security Protocol (ESP), a protocol used within IPSec VPN’s [7], could be used. Instantiating an
IPSec session requires its own key exchange which, in this case, is excessive as we merely wish to
exchange a second key for SRTP. This method would increase the time taken from dialing a number
to the remote telephone ringing. Transport Layer Security (TLS) [13] could be used instead. TLS
requires certificates and, when properly implemented, will perform a third party authentication check.
This adds an additional delay to the call setup. Another drawback of TLS is that, currently, TLS can
only be transported within the TCP protocol. The TCP protocol does not suit real-time applications
as it has built-in retransmission mechanisms and large over-heads. However, a draft RFC has been
written [14] which proposes Datagram Transport Layer Security (DTLS) for UDP. Should DTLS
become a reality, SDP handshakes could be transported over UDP with transport layer security.

To successfully solve the key exchange problem, we need a protocol that is able to securely ex-
change a key with minimal or no overhead. Working in a client-server environment, one could employ

a method where the key is exchanged at client registration. This method would allow for the key to be
available, with no delay, before any call is created. However, this method would need to expire and
re-create keys, possibly on SIP re-registrations.

A better solution is to use the Multimedia Internet Keying (MIKey) protocol (RFC 3830) [15] is
designed to securely exchange cryptography keys for multimedia sessions. MIKey makes use of the
Diffie-Hellman key exchange [7], which allows us to derive a symmetric key between two parties.
The key is never transmitted in the clear and the use of intercepted information to generate the key is
nearly impossible [7]. It is important to note that, without authentication, Diffie-Hellman is vulnerable
to man-in-the-middle attacks. Diffie-Hellman is able to derive a key, between two parties, within three
exchanges [16]. This allows us to perform a key exchange during a SIP/SDP handshake, which also
requires three messages, eliminating any delay in call setup. The next step in the integration of SRTP
into Asterisk would be to implement MIKey instead of exchanging keys within SDP.

7 INTEROPERABILITY OF MAGNUSSON’S IMPLEMENTATION

To evaluate the interoperability of Magnusson’s integration, calls were made to and from a third party
implementation of SRTP and the SDP key exchange. For this test we used the Snom360 softphone
[17]. The Snom softphone allows us to create a secure call without encrypting the SDP key exchange.
Other phones, for example MiniSIP [3], require a certificate to secure the SDP key exchange. The
Asterisk source code was edited in order to generate a log of all library calls made to libSRTP. The
segment below was generated when a call was made from Asterisk to the Snom softphone.

Apr 24 07:52:07 NOTICE[32234]: rtp.c:459 ast_srtp_policy_set_master_key: SRTP
Setting master key
Apr 24 07:52:07 NOTICE[32234]: rtp.c:459 ast_srtp_policy_set_master_key: SRTP
Setting master key
Apr 24 07:52:07 NOTICE[32234]: rtp.c:413 ast_rtp_add_srtp_policy: Registering SRTP
Adding a Policy
Apr 24 07:52:07 NOTICE[32234]: rtp.c:413 ast_rtp_add_srtp_policy: Registering SRTP
Adding a Policy
Apr 24 07:52:07 NOTICE[32234]: rtp.c:439 ast_srtp_policy_destroy: SRTP destroying
policy
Apr 24 07:52:07 NOTICE[32234]: rtp.c:439 ast_srtp_policy_destroy: SRTP destroying
policy
-- Executing Ringing("SIP/1009-7b71", "") in new stack
-- Executing Dial("SIP/1009-7b71", "SIP/7534@sip.ict.ru.ac.za") in new stack
Apr 24 07:52:07 NOTICE[9096]: rtp.c:1214 ast_rtcp_new: RTCP Init
-- SIP/sip.ict.ru.ac.za-e131 is ringing

-- SIP/sip.ict.ru.ac.za-e131 answered SIP/1009-7b71

To further confirm the interoperability of Asterisk and Snom, the network was sniffed while the
call was setup. These excerpts were collected when a call was made from the Snom softphone to As-
terisk. The following table shows the successful SIP negotiation. The segment after the table shows
the key exchange within the SDP handshake.

Source Destination Protocol Description

Snom Asterisk SIP/SDP
Request: INVITE sip:7534@almira.ict.ru.ac.za;user=phone, with
session description

Asterisk Snom SIP 407 Proxy Authentication Required
Snom Asterisk SIP ACK sip:7534@almira.ict.ru.ac.za;user=phone

Snom Asterisk SIP/SDP
INVITE sip:7534@almira.ict.ru.ac.za;user=phone, with session de-
scription

Asterisk Snom SIP 100 Trying
Asterisk Snom SIP 180 Ringing

62 2.473182 146.231.121.208 146.231.123.45 SIP/SDP Request: INVITE
Media Attribute (a): crypto:1 AES_CM_128_HMAC_SHA1_32 inline:pHHprnxpQZPqdJLoQVa...
Media Attribute Fieldname: crypto

Media Attribute Value: 1 AES_CM_128_HMAC_SHA1_32 inline:pHHprnxpQZPqdJLoQVaDw...

From these tests we can conclude that Magnusson’s integration of SRTP into Asterisk is com-
patible with at least one other implementation using SDP headers for the key exchange and SRTP to
ensure confidentiality and integrity.

8 CONCLUSION

The computational cost is not too high when providing confidentiality, integrity and authenticity be-
tween two endpoints in a peer-to-peer VoIP system. On the other hand, a client-server topology
requires the server to manage at least two streams per client, the performance impact of security is
significant on a server and potentially problematic when transferring data in real-time.

This paper introduces SRTP, a security protocol designed to suit the real-time and resource inten-
sive needs of VoIP. The integration of SRTP into Asterisk is described and its successful implementa-
tion is proved through inspection. Interoperability is confirmed by testing the integration with another
implementation of SRTP. However, future work is needed as the encryption keys are exchanged via
an SDP header, therefore, keys are exchanged in the clear and can be captured easily. MIKey is a
promising secure key exchange protocol which, like SRTP, is designed with real-time-multimedia
applications in mind. The addition of MIKey to the SRTP-Asterisk integration is recommended.

ACKNOWLEDGEMENTS

This work was undertaken in the Distributed Multimedia CoE at Rhodes University, with financial
support from Telkom SA, Business Connexion, Comverce, Verso Technologies, THRIP, the National
Research Foundation and the German Academic Exchange Service.

References

[1] B. Clayton, A. Terzoli, and B. Irwin, “Performance Cost in Securing Confidentiality, Integrity
and Authenticity of VoIP Communications,” inProceedings of SATNAC 2005 - Convergence -
Can technology Deliver, September 2005.

[2] D. McGrew, E. Carrara, M. Baugher, M. Naslund, and K. Norrman, “RFC 3711: The Secure
Real-time Transport Protocol (SRTP),” tech. rep., Cisco Systems, Inc and Ericsson Research,
March 2004.

[3] I. Abad, “Secure mobile voip,” Master’s thesis, Royal Institute of Technology (KTH), Stock-
holm, Sweden, June 2003.

[4] J. Penton and A. Terzoli, “Asterisk: A Converged TCM and Packet-based Communications
System,” inProceedings of SATNAC 2003 - Next Generation Networks, September 2003.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RFC 1889 - RTP: A Transport Pro-
tocol for Real-Time Applications,” tech. rep., GMD Fokus, Precept Software Inc, Xerox Palo
Alto Research Center, Lawrence Berkeley National Laboratory, January 1996.

[6] S. Casner and H. Schulzrinne, “RFC 3551: RTP profile for Audio and Video Conferences with
Minimal Control,” tech. rep., Columbia University, Packet Design, July 2003.

[7] C. R. Davis,IPSec. Securing VPNs. Berkeley, California: Osborne/McGraw-Hill, 2001.

[8] D. McGrew, “libSRTP 1.4 Overview and Reference Manual,” tech. rep., Cisco Systems, Inc,
2001.

[9] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand-
ley, and E. Schooler, “RFC 3261: SIP Session Initiation Protocol,” tech. rep., Dynamicsoft,
Columbia U., Ericsson, WorldCom, Neustar, ICIR, AT&T, June 2002.

[10] M. Handley and V. Jacobson, “RFC 2327: SDP: Session Description Protocol,” tech. rep., ISI,
LBNL, April 1998.

[11] M. Spencer and F. Miller, “Inter-Asterisk EXchange (IAX) Version 2,” tech. rep., Digium (Inc),
Cornfed Systems (LLC), July 2005.

[12] F. Andreasen, M. Baugher, and D. Wing, “Session Description Protocol Security Descriptions
for Media Streams ,” tech. rep., Cisco Systems, Inc, September 2005.

[13] K. Ono and S. Tachimoto, “SIP signaling security for end-to-end communication,”Communi-
cations, vol. 3, pp. 1042–1046, September 2003.

[14] J. Fischl and H. Tschofenig, “Session Description Protocol (SDP) Indicators for Datagram
Transport Layer Security (DTLS),” tech. rep., CounterPath Solutions, Inc. and Siemens, Febu-
rary 2006.

[15] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman, “MIKEY: Multimedia Internet
KEYing,” tech. rep., Ericsson Research, August 2004.

[16] M. Steiner, G. Tsudik, and M. Waidner, “Refinement and extension of encrypted key exchange,”
SIGOPS Oper. Syst. Rev., vol. 29, no. 3, pp. 22–30, 1995.

[17] “Snom VoIP Phones Available - http://www.snom.com,” 2006.

