
THE USE OF FILE TIMESTAMPS IN DIGITAL

FORENSICS

Renico Koen1, Martin S. Olivier2

1ICSA

University of Pretoria

South-Africa
2ICSA

University of Pretoria

South-Africa

1renico.koen@gmail.com, 2martin@mo.co.za

ABSTRACT

Digital evidence is not well perceived by the human senses. Crucial pieces
of digital evidence may simply be missed by investigators as the forensic
significance of seemingly unimportant pieces of collected data may not be
fully understood. This paper will discuss how abstract pieces of informa-
tion may be extracted from seemingly insignificant evidence sources such a
file timestamps by making use of correlating evidence sources. The use of
file timestamps as a substitute for missing or corrupt log files as well as the
information deficiency problem surrounding the use of timestamps will be
discussed in detail. A prototype was developed to help investigators to de-
termine the course of event as they occurred according to file timestamps.
The prototype results that were obtained as well as prototype flaws will also
be addressed.

KEY WORDS

Digital Forensics, Event Reconstruction, Reco Platform, Timestamps.



THE USE OF FILE TIMESTAMPS IN DIGITAL

FORENSICS

1 INTRODUCTION

Digital evidence is not well perceived by the human senses [10]. Crucial pieces
of digital evidence may simply be missed due to the fact that examiners do
not fully comprehend how seemingly useless pieces of data can be converted
to evidence of high value. This situation may be very problematic for dig-
ital investigators as it may help to create an incomplete picture of digital
crimes under inspection [2]. It is therefore extremely important to examine
all evidence, no matter how insignificant it may seem.

If an investigation team can understand an intruder’s modus operandi,
it may be possible to determine various attributes describing the intruder,
such as skill level, knowledge and location [3]. Security mechanisms such
as log files will usually be used to determine the actions of the intruder.
Unfortunately it is possible that active security systems on the compromised
system may be configured incorrectly or disabled completely [9]. In such
circumstances investigators will have to turn to alternative sources of digital
evidence.

File timestamps may serve as a worthy alternative, as timestamp informa-
tion may be viewed as a simplistic log of events as they occurred. Although
file timestamp information may be considered one-dimensional in a sense
that it only records the time of the very last action that was performed on
a file, it may still be a valuable source of evidence when very few alterna-
tives remain. Unfortunately the processing of file timestamp information
may be complicated by the sheer volume of available timestamps that should
be processed.

The overabundance of digital evidence that need to be processed in small
amounts of time could be described as an audit reduction problem [4]. The
audit reduction problem describes the situation in which the presence of too
much information obscures the focus point of investigations. Audit reduction
would therefore be prevalent in digital evidence analysis due to the masses
of files that needs to be inspected, spurred on by massive storage capacities
of modern storage devices.

File timestamps analysis is an excellent example of the audit reduction
problem: modern hard drives storage capacity may be anywhere in between

1



the gigabyte to terabyte ranges; a very large number of files may be found on
these devices — each file having different timestamp information associated
with it. Although most of the file timestamps would be irrelevant to a case,
a few may still be the key to its successful resolution. If these timestamps
are simply overlooked, an incorrect conclusion could potentially be reached
which may have dire consequences in store for the accused as well as the
investigation team.

This paper will discuss the use of timestamps as a supplement or alterna-
tive to log files when log files are not available. The information deficiency
problem, which describes the situation in which not enough information is
available to allow investigators to get a clear picture of forensic significant
events, will be discussed. This is done to inform the user of possible problems
that may be experienced with alternative evidence sources. The concept of
synergy applied to digital data is proposed as a solution to the information
deficiency problem. The principle should allow investigators to use various
insignificant evidence sources to generate abstract forms of information that
are considered to be of forensic value. The paper is structured as follows.
Section 2 will discuss the importance of file timestamps. Section 3 will focus
on file timestamps related to incident phases. Section 4 will introduce the in-
formation deficiency problem and section 5 will discuss a possible solution to
the problem. Section 6 will discuss the development of a prototype, section
7 will discuss the results obtained and section 8 will discuss the prototype
flaws. Finally, section 9 will describe future work and section 10 will discuss
the conclusion.

2 FILE TIMESTAMPS AS A SOURCE OF EVIDENCE

Attackers may try to delete or alter log files in an attempt to cover their
tracks; fortunately pieces of information may still remain due to a lack of
skills or access rights [9]. As an example, consider the use of well-known
UNIX commands such as cat and grep. The attacker may use these two
commands to remove identifying information from a system log file. A clever
attacker may even change the log file’s modification date after the alteration
as not to arouse any suspicion from the system administrator. With the
system log files compromised, investigators will have to find an alternative
source of evidence as compromised evidence sources may not be credible in
a court of law.

Fortunately there exists a less obvious source of digital evidence — file

2



timestamps. Consider the example mentioned previously: the attacker used
a combination of well-known tools such as the cat and grep commands to
remove identifying information from the system log file. Very few attackers
would actually reset the file access timestamps that were created when the
shell command was executed. Even if they did manage to modify the file
access times, they would have used a tool to do so. This means that although
the commands used by the attacker do not have valid timestamps associated
with it, a valid timestamp would be left somewhere on the system by the
attacker, unless the command was executed from a read-only medium.

From the discussion it should be obvious that only extremely skilled at-
tackers would be able to access a system without leaving a single trace; less
skilled attackers are bound to leave small pieces of evidence behind that may
ultimately be used to identify the responsible parties.

Popular file systems such as FAT, NTFS and EXT store file timestamps
to keep record of:

• The file creation time

• Last time the file was accessed

• The last time the file was modified

These timestamps are updated by the underlying operating system when
appropriate, but skilfully written applications also have the ability to ma-
nipulate timestamps as they require. Applications have different approaches
concerning the management of timestamps. As an example, consider two
well-known UNIX applications, namely cp and tar. When a file is copied
using the cp command, the resulting creation and modification timestamps
of the destination file would indicate the time that the cp command was
executed. This is not the case with the tar command. When a compressed
archive is created, the relevant files, along with their timestamps, are stored
in a compressed archive. It should therefore be noted that some applications
will posses timestamp modification capabilities which may have a negative
effect on the timestamp analysis process. This topic will be discussed further
in section 8.

3



3 TIMESTAMPS AND INCIDENT PHASES

Three digital evidence stages have been identified by Koen and Olivier [6]
which classify evidence according to its temporal relationship with a digital
incident. The identified stages are as follows:

• Pre-incident

• Incident

• Post-incident

The pre-incident stage focuses primarily on forensic readiness. Forensic
readiness describes the extent to which a system is able to supply forensically-
sound information to aid the digital investigation process [7]. Special software
and hardware can be installed to monitor user actions and minimize the likeli-
hood that the users of these systems can participate in mischievous activities
without being noticed through policy management and the enforcement of
restrictions. Suspicious activities may be captured and logged as required.
The incident stage is concerned with the capture of digital evidence while a
crime is being committed. The incident stage is primarily responsible for the
capture and archiving of events as they occur in real time. The last stage
is the post-incident stage in which the entire suspect and/or victim system’s
state is captured and analyzed after the digital crime has been committed.
The phase is characterized by the mass-archiving of the states of the systems
involved in the digital crime in an attempt to determine how the systems
were used and by whom.

The information supplied by timestamps is very limited in a sense that
a timestamp only records the last time a specific activity took place. To
simplify this discussion, it will be assumed that a file will only have a single
timestamp associated with it. Although this is not the case in reality, the
principle will stay the same for timestamp-based information.

The most accurate timestamp from an evidence timeline classification
point-of-view would be the timestamp recorded in the pre-incident stage as a
timestamp with a time earlier than the incident means that the file in question
was used before the incident occurred. This means the file may have executed
an action on files involved with the incident, but it could only have done so
up until the point that it was last loaded in memory. Timestamps captured

4



in the incident stage indicate that the files in question were used during the
incident stage, but could also have been used during the pre-incident stage.
The situation gets worse in the post-incident stage: files with timestamp in
this stage may have had actions performed on them during any one of the
phases. An information deficiency problem therefore exists with regards to
timestamps and the incident stage and especially the post-incident stage.

For analysis purposes it will have to be assumed that evidence had actions
performed on it in every stage prior to its current incident stage. A solu-
tion to the information deficiency problem may be to introduce additional
evidence sources in an attempt to build a timelines that indicate upper and
lower bound incident stages in which actions were performed on the object
in question.

4 APPLICATIONS AND FILE TIMESTAMP RELATIONSHIPS

In order for a timestamp to change an action is needed. The action will
have to be triggered by an application or device driver resident in memory
at the time of change. For this discussion it is assumed that three types of
timestamps exist, namely the creation, modification and access timestamp
and that the operating system alone can modify file timestamp values. The
value of the timestamp is not important in this example as its meaning is
largely dependent on the application that triggered the event. What should
be considered important is the fact that an executable code that triggered
the event to be executed should have been active in physical memory prior to
triggering the event. This means that the file in question should have been
loaded into memory, thus modifying its file access timestamp. An executable
that accesses or modifies a file should therefore have an file access timestamp
which is smaller than the file in question’s timestamp (create, read or modify
depending on the action performed). The following macro can be defined to
determine if an application’s create, access or modify time has been edited:

touched(f) = ceil ( create(f), access(f), modify(f) )

Using the defined macro, the following condition should therefore hold:

access(executable) <= touched(file)

5



Unfortunately due to the information deficiency problem identified pre-
viously, a piece of executable code may be loaded again in the future which
means that the stated condition will not hold anymore as the access time of
the executable code changed. The following situation may therefore exist:

access (executable) <= touched(file) or access (executable) >= touched(file)

This basically means that it would not be possible to pinpoint the ap-
plication responsible for the modification of a file as not enough information
exists. If the timestamp found on an executable piece of code shows that the
executable was last accessed before a file timestamp was last modified it does
not necessarily rule out the executable as the accessory or modifier of the file
in question as some sections of code may stay resident in memory for a period
of time before it actually accessed the file. It can therefore be concluded that
application/file timestamp relationships is of very little forensic significance
on its own; some additional form of information is needed to help to rule out
executables that could not have modified the file in question. The executable
access timestamp cannot be used to help rule out the application associated
with it as the application may have been resident in memory for some time
before it triggered the modification of a file’s timestamps. If it were possible
to prove that the application in question was removed from memory some
time after its file access timestamp indicated, it may be enough to rule out
the application as the trigger source.

As an example, consider the diagram illustrating the executable access
timestamps in the different incident stages (see figure 1). Various evidence
artefacts have been organized according to file creation timestamp dates.
As discussed previously, application/file timestamp relationships are not of
forensic significance on their own; executable 1, 2 and 3 could therefore
individually have created files A, B, C, D and E. It is therefore not possible
to rule out any executables from the equation.

Imagine the intruder managed to reboot the system in question during the
incident phase. Knowledge of this event may help to place an upper-bound
on the last possible time that executable 1 could have had an effect on the
file timestamps of the listed artefacts. File access information informs us
that executable 1 was last executed during the pre-incident phase; a system
log file (collaborating evidence) shows us that the system went offline during
the incident phase. Executable 1 was not loaded again after the system went
back online after the reboot. It can therefore be concluded that executable

6



Figure 1: Files organized according to timestamp information.

1 did not have an effect on the timestamps of the listed artefacts after the
reboot. With enough collaborative evidence at hand it may be possible to
narrow the list of possible executables down substantially which may have
been responsible for triggering an event that modified timestamp information.
This example relied on the knowledge that a system rebooted. Normally
such information will be gathered from a system log file, but in the absence
of credible log files, investigators may once again need to turn to file access
timestamps as an indicator of system events. When a system boots, various
executables are loaded as services. These executables are usually only loaded
once and stay loaded until a system halts or reboots. By looking at the access
timestamps of these services it may actually be possible to determine when
the system booted. This method will be discussed further in section 6.

5 SOLUTION TO THE INFORMATION DEFICIENCY PROB-

LEM

Synergy describes the situation in which the whole is greater than the sum of
the parts [11]. Although the discussed events may be seen as insignificant on
their own, their importance may increase when their collective importance is
realized, therefore when a state of synergy is achieved.

7



Consider the example in figure 1 again: each of the events that caused
changes in timestamp information associated with the files is of very little
forensic value when considered on their own. Even the timestamp that in-
dicated that the system in question performed a boot operation would seem
relatively useless on its own as it does not convey any useful information
other than a system boot took place. The real value in the timestamp infor-
mation lies in the fact it represents events that took place. On a higher level
these events may be related with one another to create an abstract view of
the events as they occurred.

The example in the previous section illustrates that it may be possible
to extract useful information from seemingly useless data when viewed on
its own. A file’s access timestamp may have very little importance on its
own; its importance is directly related to the importance of the event that
it represents. A principle based on synergy that focuses on the creation of
abstract evidence information from insignificant pieces of data may therefore
be formulated as follows:

Event data is generated when a significant digital event occurs. Although
the generated event data is of little value when viewed independently, col-
lectively event data can produce information that can help investigators to
deduce relationships between events to produce abstract views of the evidence
at hand.

Investigators usually have lots of complex questions to answer in a short
period of time [3]; the possibility therefore exists that evidence may be over-
looked as investigators focus their attention to evidence that seems more
important in an attempt to save valuable time. Identifying the relationships
that may exist between seemingly unimportant pieces of digital evidence may
be an extremely tedious task to perform. As Adelstein [1] points out, it is
not feasible for investigators to manually analyze storage devices with stor-
age capacities in access of gigabytes as there is just too much data to process.
Without some form of automated processing the benefit obtained as a result
of time invested by investigators would be minimal due to the sheer volumes
of data that needs to be processed.

8



6 PROTOTYPING

A prototype has been created based on application/timestamp relationships
discussed previously in an attempt to illustrate the defined principle in ac-
tion. The prototype was developed to extract information from Linux-based
EXT2/3 file system storing ordinary files, applications and system logs. The
prototype was built under the assumption that the file timestamps have not
been tampered with. It has also been assumed that the executable access
time indicated the last time the application was loaded by the operating sys-
tem. File creation timestamps were ignored as it is assumed that file access
and modification times will always be larger than a file’s creation time.

Casey [2] proposed a certainty scale that may be used to determine the
level of trust that can be placed in the information deduced by the investi-
gators by examining the forensic evidence at hand. Evidence that appears
highly questionable will have a low certainty level associated with it while
evidence that can be correlated with other captured evidence sources will
receive a higher certainty rating. Casey’s certainty scale can be used in ad-
dition to the defined principle to increase the level of trust experienced with
extracted information; evidence which can be correlated with other sources
of information may experience a higher degree of certainty.

Relating Casey’s work and the defined principle to timestamp informa-
tion it can be assumed that timestamp information that is correlated with
timestamp information from the same disk image will have a lesser degree
of certainty than timestamp information that may be related to some other
form of evidence, such as system logs. The prototype was built with the
purpose of identifying the last possible time that an application could have
been loaded in memory, known as the last possible execution time. This was
done in an attempt to determine which files could have been modified by
the application in question. The last possible execution time is determined
in one of two ways: by correlating an application’s access timestamp with
system log entries or by correlating an application’s access timestamp with
the access timestamps of system applications and/or files that are accessed
on system boot or shutdown events.

The first method would obviously be the better choice for the correlation
of evidence as it contains a rich source of system-related history informa-
tion. To determine the last possible time an application could have been in
memory is simple: use the application in question’s access timestamp and
search for the earliest system halt or reboot event that occurred after the

9



access time in the log file. The time specified in the log for the halt or re-
boot event would therefore serve as the last possible execution time as the
executable was never accessed again after that specific point in time. The
second method may serve as an alternative to log files in situations when
it has become evident that the system log files have been tampered with or
in environments where no log files exist. When an operating system boots
or halts, it will load various system applications and access stored settings,
changing their accessed timestamps. The timestamps viewed on their own
are insignificant, but when used to determine when a system was turned on
or off, it may be of great value to forensic investigators. As an example,
consider the sequence of events that occurs when a standard Linux system
boots. The first process created by the kernel executes the /sbin/init applica-
tion. When the /sbin/init application starts, it reads the /etc/inittab file for
further instructions. By simply checking the accessed timestamps of either
one of the two files it would be possible to determine the last time that a
system booted. It can be argued that the information is also obtainable from
alternative sources (such as the /proc/uptime file), but in situations where
the alternative is damaged or simply does not exist, timestamps will have to
suffice. Calculating the last possible execution time for the second technique
is similar to the method used to determine the last possible execution time
for the first method: determine an application’s accessed timestamp infor-
mation and determine the last time a system booted or halted by looking at
the applications and files associated with the system boot or halt operations.

The prototype reads disk images to produce XML files containing time-
stamp information. These XML files are then converted to scatter charts to
improve the way timestamp information is perceived by the human senses.
The prototype depends on two freely available libraries, namely the Reco
Platform [5] and JFreeChart [8]. The design is illustrated in figure 2.

The Reco Platform supplies low-level EXT2/3 support to the system
while the JFreechart library supplies the graphing functionality required by
the application. The prototype source code has been released under the GNU
GPL license and is available on Sourceforge [5]. The next section will discuss
the results that were obtained using the developed prototype in more detail.

7 RESULTS

The prototype was tested using Linux (Fedora Core 4). A disk image was
made and last possible execution times were computed for each application

10



Figure 2: The prototype design.

Figure 3: A screenshot of the prototype.

using both methods described previously to produce separate XML files.
A scatter chart was constructed using each detected file’s modification and
access times as coordinate values. A selected application’s last possible exe-
cution time was plotted as horizontal and vertical lines to indicate the reach
(in terms of what the application could have modified) of the application in
question. Figure 3 illustrates the produced scatter chart as well as the hori-
zontal and vertical lines indicating the maximum reach of the application in
question.

The user is allowed to select an application of interest in a dropdown con-
trol populated with a list of applications. The application’s last possible exe-
cution time is computed and plotted on the scatter chart upon selection.The
last possible execution time, access time and modification times are repre-

11



sented by an integer value; the integer value is a timestamp that describes
the amount of seconds that have elapsed since January 1,1970 (which means
that the values could easily be manipulated using a function such as ctime)
when the event in question occurred or should occur. In the example (figure
3) the last possible execution time for the application /etc/X11/xdm/chooser
was calculated to be 1146687137 seconds since 1 January 1970. Translated
to human-understandable terms, the last possible execution time for the ap-
plication in question is Tuesday, May 2, 2006 at 23:58:57. The application
cannot be responsible for any file access or modification operations performed
after the last possible execution time, represented by the horizontal and ver-
tical lines on the graph. Any files outside of the horizontal and vertical lines
will therefore have been accessed or modified by other applications.

By simply looking at the generated chart it is possible to visually detect
which files could have been modified by the application in question. Due to
the sheer magnitude of the amount of files that are stored on a disk drive,
a file filter functionality has been added to the prototype to search for files
with timestamps conforming to specific criteria. Determining the names of
the files that could have been modified by the application in question was as
simple as submitting a filter query that contained the last possible execution
time of the application in question.

A comparison between the two techniques used to determine an appli-
cation’s last possible execution time yielded the results that were expected:
since system log files contain detailed history information, more accurate last
possible execution times could be calculated leading to more accurate results.
File access timestamps contain only the last time the file was accessed and
can therefore be compared to a log file containing entries which date back to
the last time a system in question was booted. This implies that the method
could work with the same efficiency as the first method in a scenario where
a system rarely goes offline. However, this method would be very inaccurate
for systems that goes offline frequently.

8 CRITICISMS

As discussed in section 2, some applications have the ability to modify time-
stamps. The work in this paper assumed that the timestamps are modified
by the operating system only and did not take into account that applications
may manipulate the proposed analysis method by changing file timestamps
to render the method invalid. In reality, interpreted meaning of a timestamp

12



is therefore largely dependent on the way in which the application responsible
for the creation or modification of a file manages timestamp information.

It has also been assumed that applications will be stored on a writable
medium; an application’s timestamp information will therefore be updated
each time the application is loaded into memory. This may not necessarily
be the case as it is possible in UNIX environment to mount file systems in
read-only mode. This means that an application’s file access time will not
change rendering the method described in this paper useless.

Another concern is that an application may have accessed or modified a
suspicious file prior to its last possible time of execution; if the suspicious file
was accessed or modified again some time later in the future (presumably
after the application in question’s last possible time of execution), the time-
stamp may be labelled as being out of reach of the application in question.
Technically this is true as the file was last modified by another application,
but this situation may not always be desirable. A way to overcome this
problem is to divide application timestamps into the various incident stages
discussed in section 3. Only applications with access timestamps falling in the
incident and post-incident phase will have to be considered for inspection as
it can be assumed that applications with last possible execution times falling
in the pre-incident stage were not involved with the incident in question.

9 FUTURE WORK

A complex application would typically touch various files while it is executing.
A typical scenario would be where the application in question first accesses its
configuration files and then data files. By describing an application’s actions
formally, it may be possible to create a profile that accurately describes an
application’s file access characteristics.

Another topic that requires attention is the inspection of the file access
of an operating system’s boot process. When an operating system performs
the boot process, various files will be accessed. Different operating systems
would access different files which creates the possibility that the file access
operations performed by an operating system could potentially be used as a
fingerprint to help operating system identification in circumstances in which
conventional methods are not deemed appropriate. The described process
could potentially be improved by adding the concept of a termination sig-
nature. The termination signature describes the characteristics of an appli-
cation when it terminates, in other words what actions it takes just before

13



it terminates. If such a signature can be incorporated into the concepts
described in this paper, more accurate results may be obtained.

10 CONCLUSION

This paper discussed how timestamps could be used to rule out files that
could not have been modified by distinct applications based on an applica-
tion’s calculated last possible execution time. A principle was introduced
based on the concept of synergy claiming that insignificant pieces of event
datum may collectively be of significant forensic importance. A prototype
was constructed based on this principle, using timestamps as a source of
insignificant evidence. The prototype calculated various applications’ last
possible execution times and visually depicted the information in a manner
that can easilly be understood by the observer. The prototype helped to
visualize abstract digital data which are not well-perceived by the human
senses to help investigators to easily understand the produced data as well
as its importance. Unfortunately the method used by the prototype is not
absolute in a sense that it cannot successfully be applied to all environments
under all conditions. It has become evident that a great need exists for ways
in which digital evidence can be visualized. More research will have to be
conducted to find ways to visualize digital information to allow investigators
to easily understand digital evidence at hand.

References

[1] Adelstein, F. Live forensics: diagnosing your system without killing
it first. Commun. ACM 49, 2 (2006), 63–66.

[2] Casey, E. Uncertainty, and loss in digital evidence. International
Journal of Digital Evidence 1, 2 (2002).

[3] Casey, E. Investigating sophisticated security breaches. Commun.
ACM 49, 2 (2006), 48–55.

[4] Corey, V., Peterman, C., Shearin, S., Greenberg, M. S., and

Bokkelen, J. V. Network forensics analysis. IEEE Internet Comput-
ing 6, 6 (2002), 60–66.

14



[5] Koen, R. Reco platform homepage. Online:
http://sourceforge.net/projects/reco, June 2007.

[6] Koen, R., and Olivier, M. An open-source forensics platform. In
SAICSIT ’07. Proceedings of the Annual SAICSIT conference (2007).

[7] Mohay, G. Technical challenges and directions for digital forensics.
In SADFE ’05: Proceedings of the First International Workshop on
Systematic Approaches to Digital Forensic Engineering (SADFE’05) on
Systematic Approaches to Digital Forensic Engineering (Washington,
DC, USA, 2005), IEEE Computer Society, p. 155.

[8] ORL. JFreechart. Online: http://www.jfree.org/jfreechart, Online:
July 2007.

[9] Stallard, T., and Levitt, K. Automated analysis for digital foren-
sic science: Semantic integrity checking. In ACSAC ’03: Proceedings of
the 19th Annual Computer Security Applications Conference (Washing-
ton, DC, USA, 2003), IEEE Computer Society, p. 160.

[10] Wang, S.-J. Measures of retaining digital evidence to prosecute
computer-based cyber-crimes. Comput. Stand. Interfaces 29, 2 (2007),
216–223.

[11] Wikipedia. Synergy. Online: http://en.wikipedia.org/w/index.php?title=Synergy,
July 2007.

15


