

A PROOF-OF-CONCEPT IMPLEMENTATION OF

EAP-TLS WITH TPM SUPPORT

Carolin Latze and Ulrich Ultes-Nitsche

University of Fribourg

{carolin.latze | uun}@unifr.ch

Boulevard de Pérolles 90

1700 Fribourg

Switzerland

ABSTRACT

Many people who have tried to configure their IEEE 802.11 enabled mobile

phones to connect to a public wireless hotspot know one of the major

differences between IEEE 802.11 networks and 2G: the missing

standardized login process. While the 2G standard covers all aspects of the

communication process, first IEEE 802.11 standards only targeted the data

transmission. Due to this lack of standards for authentication, the login

process and the missing secure subscriber identification, a number of

different, mostly incompatible, login procedures have been established that

are all far away from being as usable, comfortable and secure as 2G

methods. This is why the authors of this paper propose to use EAP-TLS,

which is a well established, secure and scalable authentication protocol, in

combination with identities provided by a Trusted Platform Module (TPM)

in order to archieve a high comfort for the user

This paper describes the concept, presents a Linux based

implementation, and evaluates the approach in a testbed.

KEY WORDS

Security, Authentication Protocols, TPM, EAP-TLS

A PROOF-OF-CONCEPT IMPLEMENTATION OF

EAP-TLS WITH TPM SUPPORT

1 INTRODUCTION

From the user’s point of view, GSM networks are one of the simplest and

most comfortable networks that exist. There is no need to configure

anything, just buy a phone and Subscriber Identity Module (SIM) and use it.

That is completely different for 802.11 networks as they do not provide a

standardized authentication protocol. When GSM was released, it included

an identity management and based on those identities one authentication

protocol used in every GSM-enabled device. By contrast, at the time 802.11

was released, the standard concentrated on data transmission and not on

identity management and authentication. All the authentication protocols

that exist today came later and - as shown in [1] – are not comparable to

GSM authentication. With the emergence of Trusted Platform Modules

(TPMs), for the first time there exists a kind of integrated hardware token

and identity provider in the world of computer networks comparable to the

SIM card in GSM networks. In 2007, the authors of this paper proposed to

use these TPMs with EAP-TLS to build a secure scalable and user-friendly

authentication protocol for 802.11 networks, which is as comfortable as the

GSM authentication protocol [1]. This paper presents a concrete realization

of the proposed protocol, providing a proof-of-concept prototype of the

protocol showing how easy it is to modify existing EAP-TLS

implementations to use this new approach. Furthermore, the work shows,

that this protocol may be used on every kind of 802.11 enabled device.

This paper is structured as follows: an introduction into EAP-TLS

with TPM support is given, followed by a detailed description of the proof-

of-concept prototype. The paper concludes with improvements for the

presented prototype and conclusions.

2 EAP-TLS WITH TPM SUPPORT

In 2007, the authors of this work proposed to extend EAP-TLS with TPM

support to implement a user-friendly, secure and scalable authentication

protocol for 802.11 networks [1].

EAP-TLS refers to the integration of the Transport Layer Security

(TLS) protocol within the Extensible Authentication Protocol (EAP). It is

one of the most secure authentication protocols for 802.11 networks when

using the mutual authentication mode. But using mutual authentication in

EAP-TLS means that the client needs its own certificate, which is too

complicated for naïve users. In 2002, the Trusted Computing Group (TCG)

released the main specification of the new Trusted Platform Module (TPM)

[2], which states that the TPM will come with a predefined certificate

infrastructure explained in the next section. This TPM certification process

relies on the fact, that TPMs may be uniquely identified. As such a

certificate belongs to the TPM and not to the real person, it is possible to

automate the certificate retrieval, which makes it much easier to use for

naïve users. Because of this possibility to facilitate the certificate retrieval

without compromising its security, the authors of this paper propose to use

the TPM certificates in conjunction with EAP-TLS to implement a highly

secure, scalable and user-friendly authentication protocol.

3 PROOF-OF-CONCEPT IMPLEMENTATION

The following sections show a proof-of-concept implementation of the

authentication protocol presented above. It starts with an overview over the

architecture and goes on with a detailed description of the components

needed in this architecture.

3.1 Architecture Overview

In general, the architecture consists of three components: client,

authentication server and Privacy CA as shown in Figure 1. The client is the

one, which wants to be

authenticated, the

authentication server

authenticates the client

and the Privacy CA

issues the certificates

and provides a

verification service.

Such a Privacy CA will

most likely be

deployed by every Figure 1 Architecture Overview

operator the enables EAP-TLS authentication using TPMs at its public

wireless hotspots.

The client has to request a new identity before connecting to the EAP-

TLS secured network. Afterwards, he may start an EAP-TLS authentication

with the authentication server. During this EAP-TLS authentication process,

the server has to verify the client’s certificate. As TPM certificates are

slightly different to X.509 certificates, there has to be a verification service,

which does the job for the EAP-TLS authenticator.

3.1.1 The TPM

The Trusted Platform Module (TPM) as specified by the Trusted Computing

Group (TCG) [3] is a module, which amongst others, provides

cryptographic functions and secure storage of keys and signatures. A very

important feature of the TPM is that this module can be uniquely identified.

It is equipped with a so called Endorsement Key Pair, which is unique. The

private part of this key pair is never released from the TPM. The possibility

to manage several identities (many different X.509 identity certificates) by

the TPM makes the module very useful for different applications. The user

might for instance use one identity for her e-banking account and the other

one for an authentication as proposed in this paper. Using different identities

for different purposes makes the user untraceable. Such a TPM identity

must be signed by a certification authority (CA), which means that the CA

is the only authority except the TPM’s owner that is able to map the

identities to a genuine TPM. To certify such a TPM identity, the CA has to

check several certificates provided by the TPM manufacturer. That is why a

special CA, called Privacy CA is needed to issue TPM identity certificates.

3.1.2 An Open Source TCG Software Stack: TrouSerS

The Trusted Platform Module (TPM) as described in [2] has to provide

several cryptographic methods and protected storage. But it also has to be

cheap to build to make it a ubiquitary device. That is why the TCG decided

to distinguish between methods, that have to run in a protected environment

and those that may run in a software-only environment called TCG Software

Stack (TSS).

There are already some implementations of the TCG Software Stack,

for instance the closed source NTRU TSS [4], an open source Java TSS

implementation called jTSS [5] and an open source IBM implementation

called TrouSerS [6]. Given by the applications that had to be modified for

the prototype, there was the constraint to use C as programming language

and since TrouSerS is the only open source C implementation of the TSS,

the authors decided to use it in their prototype implementation.

TrouSerS comes with a persistent storage file to store certain

uncritical information on the hard disc in order to save memory on the TPM.

This file contains for instance information about whether a key needs

authentication or not (but it does not contain the authentication secret!) and

may contain the public portion of keys, whose private key resides inside the

TPM. To access those keys in the persistent storage, so called UUIDs are

used. There are certain predefined UUIDs, for instance {0, 0, 0, 0,

0, {0, 0, 0, 0, 0, 1}} for the Storage Root Key (SRK), which is

the parent for all keys stored in a given TPM.

3.1.3 The Privacy CA and TPM Certificates

As stated above, the TPM may manage different identities. This section

describes the identity retrieval as specified in [2].

After having created a new RSA key that will serve as identity key,

the TCG Software Stack (TSS) has to collect all information needed to

request a new identity using Tspi_TPM_CollateIdentityRequest.

This information includes: The endorsement credential, which identifies the

TPM uniquely, the conformance credential, which states that the TPM is

genuine, the platform credential, which states that the platform is genuine

and the public portion of the newly generated identity key.

At the time of writing this paper, there exist only two implementations

of such a Privacy CA: One in Java, implemented by the University of Graz

[7] and freely available to install anywhere and another one available online

[8]. The Java implementation uses the XML Key Management Protocol

XKMS [9] for the communication between client and server, whereas the

online PCA uses a REST-style AP [10]. The authors decided to use the

latter one as this online PCA maps directly into client methods provided by

TrouSerS.

After having verified all those certificates and public key information

sent by the client, the PCA has to sign the identity certificate and send it

back to the client. The client is now able to use this certificate. But identity

keys are special purpose keys, which cannot be directly used for TLS

authentication. They are meant to be used to certify new keys, which may

then be used for different purposes. Although the identity certificate itself is

a valid X.509 certificate, those new certificates are not valid X.509

certificates anymore. The problem lies in the basicContraint extension

of the identity certificate. According to the TCG, the extension has to be set

to CA:false [2]. This means, that there is no possiblity to create a valid

X.509 certificate beneath the identity certificate. The reason for this

constraint lies in the structure of X.509 certificates:
Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING

}

TBSCertificate ::= SEQUENCE {

 version EXPLICIT Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity

 subject SubjectPublicKeyInfo,

 issuerUniqueID IMPLICIT UniqueIdentifier OPTIONAL,

 subjectUniqueID IMPLICIT UniqueIdentifier OPTIONAL,

 extensions EXPLICIT Extensions OPTIONAL

}

After having specified all the TBSCertificate values, the

structure gets hashed and signed with the CA’s key. The signature itself will

be filled in to the Certificate→signatureValue field. The certified

TPM keys are a bit different. The TCPA_CERTIFY_INFO structure,

returned by the method used to certify keys (Tspi_Key_CertifyKey)

looks like this:

typedef struct tdTPM_CERTIFY_INFO {

 TPM_STRUCT_VER version;

 TPM_KEY_USAGE keyUsage;

 TPM_KEY_FLAGS keyFlags;

 TPM_AUTH_DATA_USAGE authDataUsage;

 TPM_KEY_PARMS algorithmParms;

 TPM_DIGEST pubkeyDigest;

 TPM_NONCE data;

 BOOL parentPCRStatus;

 UINT32 PCRInfoSize;

 [size_is(pcrInfoSize)] BYTE* PCRInfo;

} TPM_CERTIFY_INFO;

This structure will also be hashed and signed by the identity key, but

obviously, the values to be signed are completely different from those in

X.509 certificates. However in order to use these so called certified keys in

a TLS authentication, there has to be a possibility to transmit their public

portion to the TLS server. As the TLS standard [11] requires X.509

certificates, the authors decided to implement the proof-of-concept

prototype using slightly modified X.509 certificates in order to be able to

integrate an unmodified TLS implementation. Therefore new X.509

extensions have been defined, which are simple aliases of the nsComment

extension to transmit the TCPA_CERTIFY_INFO structure within an

X.509 container. Those certificates cannot be verified by standard TLS

implementations like OpenSSL [12]. In order to overcome this problem, the

authors propose to use a verification service provided for instance by the

PCA as explained below.

3.1.4 The Concept of an OpenSSL Engine

From OpenSSL version 0.9.6 on came a new concept called OpenSSL

Engine [13]. Engine objects represent acceleration hardware or hardware

tokens like smart cards to be used with OpenSSL. In 2007, IBM also

provided an OpenSSL engine for TPMs [14]. This proof-of-concept

prototype makes use of this OpenSSL TPM engine in order to integrate the

TPM into the wpa_supplicant.

3.1.5 An Open Source EAP Peer – wpa_supplicant

There are several EAP peer implementations for every operating system like

the open source XSupplicant [15] and wpa_supplicant [16] for Linux/Unix

and Windows XP. Furthermore, there are also closed source application like

the Cisco Secure Services Client [17] or the integrated Microsoft Windows

client [18]. The authors decided to use wpa_supplicant, since this is the

standard client in many Linux installations.

wpa_supplicant supports a wide range of actual wireless and wired

authentication methods like WEP, WPA, WPA2 and many different EAP

methods. For the cryptographic methods, it uses OpenSSL by default. It also

comes with engine support at least for smart cards. In order to enable also

tpm engines, a new config option has been defined:

tpm_engine_path=/usr/local/lib/openssl/engines/libtpm.so

Furthermore, there has to be some tpm engine specific initialization

code:

static int

tls_engine_load_dynamic_tpm(const char *tpm_so_path){

 char *engine_id = "tpm";

 const char *pre_cmd[] = {

 "SO_PATH", NULL /* tpm_so_path */,

 "ID", NULL /* engine_id */, "LIST_ADD", "1",

 "LOAD", NULL, NULL, NULL

 };

 if (!tpm_so_path) return 0;

 pre_cmd[1] = tpm_so_path;

 pre_cmd[3] = engine_id;

wpa_printf(MSG_DEBUG, "ENGINE: Loading TPM Engine from

%s",tpm_so_path);

return

tls_engine_load_dynamic_generic(pre_cmd, NULL, engine_id);

}

Basically that is all to integrate the OpenSSL TPM engine into

wpa_supplicant. In order to use the TPM engine and certificates stored in

the TPM, the client software has to specify the tpm_engine_path,

engine_id=”tpm”, the key’s UUID as key_id and the TPM’s owner

password as pin in the wpa_supplicant’s configuration file.

3.1.6 An Open Source EAP Authentication Server – FreeRADIUS

Similar to the different EAP supplicant implementations, there are also

several implementations of authentication servers. There are comercial

products from Cisco [19] or Microsoft [20], but in the open source

community, the most widely deployed EAP authentication server is

FreeRADIUS [21]. This is a modular authentication server, implemented in

the C programming language. Authentication methods are implemented as

modules, which makes it easily extensible.

As written above, the first prototype uses sligthly modified X.509

certificates, which allows using the EAP-TLS module with only minor

changes. The only thing that needs to be changed is the certificate

verification as the TPM certificates are no valid X.509 certificates anymore.

In order to be able to verify those certificates, the Privacy CA has to provide

a verification service. The FreeRADIUS server tries to verify the client

certificate as always using OpenSSL. In case OpenSSL cannot verify the

certificate, the server has to open the certificate’s extension to determine

whether it is a TPM certificate or not. In case it came from a TPM,

FreeRADIUS sends the TPM relevant X.509 extensions to the verification

service, which replies with SUCCESS or FAILURE. Based on this reply,

the FreeRADIUS server decides to authenticate the client or not. In order to

avoid attacks on this verification process, the FreeRADIUS server and the

verification service have to communicate over SSL using mutual

authentication.

3.1.7 The Verification Service

In a valid setup, the client knows its certificate chain from root to its own

certificate. In the proposed setup, the client’s chain looks like this:
Privacy CA’s root certificate → client’s identity

certificate → client certificate used for

authentication. As written above, the identity certificate comes with

the CA:false constraint, which means, that this chain is not a valid X.509

chain. The valid part ends with the identity certificate. In a valid setup, the

client sends its whole chain to the server, which is then able to verify the

client’s certificate easily, but in the prototype, the client will only send the

last certificate and not the whole chain. But the Privacy CA (PCA) knows

the whole chain! That means the establishement of a verification service at

PCA solves the problem. In order for the verification service to be able to

map the first part of the chain (Privacy CA’s root certificate

→ client’s identity certificate) to the client’certificate, it

has to know the serial number of the approproate identity certificate. This

number will be sent in the client’s extensions. Using this number and the

special TPM extensions, the PCA is able to verify the client’s certificate.

4 IMPROVEMENTS

The usage of invalid X.509 certificates is probably not the best choice.

Therefore, the next prototype will work with a new kind of certificates,

designed for the special needs of the TPM:

Certificate ::= SEQUENCE {

 parentSerialNumber CertificateSerialNumber,

 pubKey OCTET STRING,

 tpmCertificate TPMCertificate,

 signatureValue BIT STRING

}

TPMCertificate ::= SEQUENCE {

 versionMajor OCTET,

 versionMinor OCTET,

 versionRevMajor OCTET,

 versionRevMinor OCTET,

 keyUsage OCTET STRING,

 keyFlags OCTET STRING,

 authDataUsage OCTET,

 algorithmID OCTET STRING,

 encScheme OCTET STRING,

 sigScheme OCTET STRING,

 parmSize INTEGER,

 parms [0] OCTET STRING OPTIONAL,

 --If not present,parmSize MUST be 0--

 pubkeyDigest OCTET STRING,

 nonce OCTET STRING,

 parentPCRStatus BOOLEAN,

 PCRInfoSize [1] INTEGER OPTIONAL,

 --If not present,parentPCRStatus MUST be FALSE—

 PCRInfo [2] OCTET STRING OPTIONAL,

 --If not present,parentPCRStatus MUST be FALSE—

}

Such a new certificate represents the TPM_CERTIFY_INFO structure

perfectly. As this new certificate knows the serial number of its X.509

parent certificate, sending valid chains becomes possible again, even if

those chains are no X.509 chains anymore! The new chain looks like this:
X.509 PCA Root Certificate → X.509 Identity

Certificate → TPM Certificate and will be stored in a file

called <name>.tpm.

However, the Transport Layer Security protocol (TLS) requires X.509

certificates to work correctly [11], which means that a new protocol must be

defined when using special TPM certificates. Therefore, the next version of

the authentication protocol will be adapted and then called EAP-TPM.

5 EVALUATION AND CONCLUSION

The implementation has shown that existing EAP-TLS implementations

may be adopted very easily in order to provide TPM support. On the client

side, the supplicant has to support TPM access to hold the private key in a

secure environment. That is very similar to a smart card based setup, which

is already supported by many supplicants. Things are bit more complicated

on the server side. Due to the fact, that the certificates used in this

implementation are invalid X.509 certificates, the server needs a new

verification method. In order to avoid that the client has to send its identity

certificate explicitly to the server, a verification service has been

implemented, which is located at the Privacy CA. The Privacy CA already

knows the identity certificates of its clients. The reason, why the authors

decided not to send the identity certificate is the following: Using invalid

X.509 certificates for the authentication is not desired for a productive

version of the protocol. Those certificates are only used in this first

prototype, which should show a proof-of-concept in a short time. Inserting a

new message into the SSL handshake to transmit the identity certificate

explicitly does not make sense since it had to be reverted for later versions.

That is why it has been decided to use an external verification service

instead. Furthermore, a new certificate type has been presented that is able

to handle TPM certified keys and will be used in the next version of this

new authentication protocol called EAP-TPM.

This prototype runs on a standard Linux system. The only applications

that need to be modified are the supplicant and the RADIUS server, which

means, that this prototype may run on every TPM equipped Linux based

system, no matter whether it is a fully deployed computer or an embedded

device.

Having such an authentication scheme will help to make 802.11

enabled mobile phones as popular as GSM phones. Furthermore, as this

protocol runs also on normal computers, it will encourage more users to use

public hotspots since it has never been so comfortable before.

6 REFERENCES

[1]Latze, Carolin, Ultes-Nitsche, Ulrich und Baumgartner, Florian.

Strong Mutual Authentication in a User-Friendly Way in EAP-TLS.

Proceedings of the 15th International Conference on Software,

Telecommunications and Computer Networks (SoftCOM 2007). Split -

Dubrovnik, Croatia : s.n., 2007.

[2]Trusted Computing Platform Alliance (TCPA). Main Specification

Version 1.1b. 2002.

[3] The Trusted Computing Group. [Online]

https://www.trustedcomputinggroup.org/home.

[4]NTRU - Products - Trusted Computing. [Online]

http://www.ntru.com/products/tcg_ss.htm.

[5]TU Graz. Trusted Computing for the Java (tm) Platform. [Online]

http://trustedjava.sourceforge.net.

[6] TrouSerS - The Open Source TCG Software Stack. [Online]

http://trousers.sf.net.

[7]TU Graz. OpenTC PKI. [Online] http://opentc.iaik.tugraz.at.

[8]Finney, Hal. Privacy CA. [Online] http://www.privacyca.com.

[9]W3C. The XML Key Management Protocol. [Online]

http://www.w2c.org/TR/xkms2.

[10]Fielding, Roy Thomas. Architectural Styles and Design of Network-

based Software Architectures. s.l. : University of California, Irvine, 2000.

[11]Dierks, T und Allen, C. The TLS Protocol - Version 1.0. 1999. RFC

2246.

[12] OpenSSL. [Online] http://www.openssl.org.

[13]Messier, Matt, Viega, John und Chandra, Pravir. Network Security

with OpenSSL. 2002.

[14] OpenSSL TPM Engine. [Online] 2007.

http://sourceforge.net/project/showfiles.php?group_id=126012.

[15]IEEE 802.1X Open Source Implementation. [Online]

http://open1x.sourceforge.net.

[16]Linux WPA/WPA2/IEEE 802.1X Supplicant. [Online]

http://hostap.epitest.fi/wpa_supplicant/.

[17]Cisco Secure Services Client. [Online]

http://www.cisco.com/en/US/prod/collateral/wireless/ps6442/ps7034/produc

t_data_sheet0900aecd805081a7.html.

[18]Windows XP Wireless Auto Configuration. [Online]

http://technet.microsoft.com/en-us/library/bb878124.aspx.

[19]Cisco Secure Access Control Server for Windows. [Online]

http://www.cisco.com/en/US/products/sw/secursw/ps2086/index.html.

[20]Microsoft Internet Authentication Service. [Online]

http://technet.microsoft.com/en-us/network/bb643123.aspx.

[21]The FreeRADIUS Project. [Online] http://www.freeradius.org.

