
A CANONICAL IMPLEMENTATION OF THE
ADVANCED ENCRYPTION STANDARD ON THE

GRAPHICS PROCESSING UNIT

Nick Pilkington1, Barry Irwin2

Rhodes University
Department of Computer Science

South Africa
1n.pilkington@ru.ac.za, 2b.irwin@ru.ac.za

ABSTRACT

This paper will present an implementation of the Advanced Encryption Stan-
dard (AES) on the graphics processing unit (GPU). It investigates the ease
of implementation from first principles and the difficulties encountered. It
also presents a performance analysis to evaluate if the GPU is a viable op-
tion for a cryptographics platform. The AES implementation is found to
yield orders of maginitude increased performance when compared to CPU
based implementations. Although the implementation introduces compli-
cations, these are quickly becoming mitigated by the growing accessibility
provided by general programming on graphics processing units (GPGPU)
frameworks like NVIDIA’s Compute Uniform Device Architechture (CUDA)
and AMD/ATI’s Close to Metal (CTM).

KEY WORDS

Cryptography, AES, GPU, GPGPU, Offload, Rijndael, OpenGL, CG



A CANONICAL IMPLEMENTATION OF THE
ADVANCED ENCRYPTION STANDARD ON THE

GRAPHICS PROCESSING UNIT

1 INTRODUCTION

General programming on graphics processing units (GPGPU) refers to non-
graphics related programming operations being performed on the graphics
processing unit (GPU) rather that on the CPU. This programming paradign
opens up many possibilities for increased performance by utilising the spe-
cialised processing nature of the GPU. There are currently two frameworks
available to program GPUs, namely Compute Uniform Device Architechture
(CUDA) [3] from NVIDIA and Close to Metal (CTM) [2] from AMD/ATI.
These frameworks currently only support their native GPU architechture
and as a result are not portable across all hardware. GPGPU can, how-
ever, be acheived from first principles in a general way that allows the code
to be executed on a wide range of different hardware configurations. This
method will be explained in section ??. This approach requires that man-
ufacturer specfic caveats and optimizations cannot be taken advantage of,
since a canonical implementation is being presented general applicability is
more important that specifically optimised performance. There are a num-
ber of popular cryptographic algorithms in use in computing today including
AES [6], Triple DES [9], and Blowfish [12]. Rijndael (AES) was selected for
sample implemetation as it is the FIPS accepted Advanced Encyption Stan-
dard [6]. This paper seek to investigate, in detail, the implementation of AES
on a GPU, more specifically it will be concerned purely with the encryption
process as the decryption process is similar. It also presents a performance
analysis of the implementation in comparison to CPU based implementations
and discussion to substantiate the results. Finally sample applications and
proposed future derivative works are suggested.

2 AES ENCRYPTION

Advanced Encryption Standard (AES) is a symmetric key cryptographic al-
gorithm also known as Rijndael designed by Vincent Rijmen and Joan Dae-
men in 1998, it was subsequently adopted as the Advanced Encryption Stan-
dard in 2002. AES is a block cipher which means that is encrypts data in

1



Table 1: Key-Block-Round Combinations

Type Key Length Block Size Number of Rounds
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Algorithm 1 AES Encryption Pseudocode

KeyExpansion
I n i t i a l Round
AddRoundKey

f o r N = 1 to Rounds−1
SubBytes
ShiftRows
MixColumns
AddRoundKey

SubBytes
ShiftRows
AddRoundKey

finite blocks as opposed to operating on a stream like Trivium [7]. The block
of data to be encrypted is termed the state. In AES the state is a 4x4 matrix
of bytes (figure 1). The state paired with an encryption key of a certain
length form the inputs for the AES algorithm. AES is comprised of four dif-
ferent stages, which together represent a single round. Each stage performs
some operations on the current state. The number of rounds varies with
different implementations of AES (table 1). This paper implements AES-
128. Algorithm 1 gives the pseudocode for the AES Encryption process and
a depiction of an encryption stage is shown in figure 2. It should be noted
that the final round of the encryption process varies from the rest as the mix
columns stage is ommitted.

2



Figure 1: AES Encryption State

Figure 2: AES Encryption Round

3



3 GENERAL PROGRAMMING ON GRAPHICS PROCESSING
UNITS

Until the third generation of GPUs was released in 2001, GPUs were not
programmable and were merely configurable to a limited degree. The advent
of this generation exposed areas of the graphics pipeline to programmers al-
lowing them execute custom code on the GPU. This is achieved through pixel
shaders which execute once on each rendered pixel in the viewport. Colour,
vertex and normal data does not need to be interpreted geometrically but are
in fact just arrays of numbers. Rendering an NxN quad onto the screen call
the execution of any mapped pixel shaders on each of the N2 elements of the
quad and their output value overwrites the value currently at that position
in the quad. Once a problem has been formulated in terms of shaders and
rendering it can be mapped and solved on the GPU. A thorough treatise
of the basics of GPGPU and how it can be achieved from first principles is
given in [10].

4 APPROACH

At the time of writing there are three different shader languages available
for programmable shaders: HLSL [4], GLSlang [11] and Cg [1]. Cg and the
OpenGL API were used for this implementation. The basis for the AES
encryption algorithm is rooted deeply in algebra and the technical specifics
of the algorithm [6] have been omitted from this paper. This section will
present a high level view of each of the four stages of the encryption process
and how each was modelled on the GPU. Each stage of the encryption process
was implemented in a separate shader. The four shaders were each executed
in order ten times on the initial state to encrypt the data.

4.1 Encryption Stages

Key Expansion

The first stage in the AES encryption process is to expand the key to ten
times its original size such that there is a key for each round of the algorithm
[6]. This is a pre-process to the encryption process and as such the expanded
key was precomputed.

4



Substitute Bytes

The substitute bytes step of the algorithm replaces each byte in the current
state with a corresponding byte using an 8-bit Sbox [6]. The Sbox repre-
sents a non-linear transformation. This transformation can be represented
in matrix form as:

b1

b2

b3

b4

b5

b6

b7

b8


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b1

b2

b3

b4

b5

b6

b7

b8


+



1
1
0
0
0
1
1
0


The actual transformations to generate the Sbox do not need to be computed
explicitly. As the values are constant for a given initial b vector. There
are 256 different different b vectors and as a result 256 corresponding Sbox
transformed values. The operation can be viewed as a table look up. Thus
the resulting look up values for all 28 initial b vectors can be computed and
stored in a 16x16 texture. The GPU indexes into this texture using the
current byte in the state and received the Sbox transformed value, which is
then written into its place.

Shift Rows

The shift rows operation cycles the bytes in each row cyclically left. The first
row is not shifted, the second row is shifted one position, the third row two
positions and finally the forth row three positions [6]. The shift operation
is performed on the GPU by offsetting the current fragment shaders texture
coordinates based on its row and performing a single texture look up on its
own texture.

Mix Columns

The mix columns stage operates on each of the four columns of the state.
Each column of the state is representative of a four-term polynomial over the
Galois field GF(28) [6], this polynomial is multiplied modulo x4 + 1 with the
fixed polynomial a(x), given by:

a(x) = {03}x3 + {01}x2 + {01}x1 + {02}

5



Figure 3: Bitwise Fields

(a) XOR. (b) AND. (c) OR.

This can be written as a logical bitwise matrix multiplication in the form
s(x)′ = a(x)⊕ s(x). Shader languages like Cg do not have support for
logical operations [8]. Although reservation has been made for the
corresponding symbols &, | and ^ [8], they had not been implemented at
time of writing. This makes a seemingly trivial task like a logical XOR
impossible to perform without some other mechanism in place. In order to
provide this functionality, a look up table of values was precomputed and
stored in a texture. A 256x256 texture was used and its red, green and blue
colour channels corresponded to the XOR, OR and AND operations
respectively. These are all binary operations and the x and y indices of the
texture correspond to the operands and the values stored in each channel to
the resulting binary operations value. When a bitwise operation needed to
be performed the two operands were scaled to the texture coordinate range
of [0.0 . . . 1.0] and a dependent texture look up was performed on the
texture. The resulting colour channel could then be read to give the XOR,
OR or AND of the operands respectively. Figure 3 depicts the red, green
and blue channels respectively. The limitation of this implementation is the
range of values of the operands. A single 256x256 texture was used and
since AES operates within this range of values, these constraints were not
problematic.

Add Round Key

The add round key stage XORs the current key with the state. With bitwise
operations the XOR operation can be implemented as the XOR between the
current byte of the state and the corresponding byte of the key.

6



4.2 Algorithm Execution

With each of the operations of AES implemented, the whole encryption
process can be achieve by encoding the initial state and expanded round
key into textures. A 4x4 pixel quad was then rendered to the screen with the
initial sub bytes fragment shader bound. This produced the output for the
first stage of the AES encryption. The contents of the frame buffer were then
copied back into the texture using a render to texture feedback mechanism
after which the shift rows fragment shader was loaded and another 4x4 pixel
quad rendered. This process was replicated for the mix columns and add
round key stages to yield one iteration of the AES encryption. Since ten
iterations were required, the whole process is preformed 10 times giving the
encrypted state. Care was taken to treat the final iteration correctly, since
the add round key operation does not take place here [6].

4.3 State Tiling

GPU shader operations take place in parallel [10]. Since the only data de-
pendence in AES encryption is that the stages of the encryption take place
in order there is no reason to limit processing to a single state per rendering
if more than one can be represented. If a single 4x4 texture were used to
represent the current state it would utilise less than 0.0016% of a 1024x1024
view space. For this reason 65, 536 state were tiled across the view port to
enable complete utilisation of the view space as in figure 4.

5 TESTING CONFIGURATION

The GPU implementation was benchmarked for speed and accuracy. Its
speed was measured by how much data it could encrypt per second. This
amount was measured as the average amount of data encrypted per second
over a 60 second run. All runs were executed on the machine specification
detailed in table 2. The encryptions were performed on deterministically ran-
dom data. The results of each stage of the AES encryption process were cross
validated against OpenSSL’s AES implementation [5] to ensure correctness.

7



Figure 4: State Tiling in the View port

Table 2: Test Platform Configuration

Category Details
Processor Intel Core 2 Duo (1.86Ghz)
Memory 2048MB DDR2 (400Mhz)
Graphics NVIDIA GeForce 7900 GT (256MB)

Mainboard Intel Corporation Q965
Hard drive 80GB SATA

Operating System Windows XP Service Pack 2

8



Table 3: AES Encryption Rate
Type Encryptions per Second (16-byte state)
CPU 7254.25
GPU 25449.65

Table 4: Maximum Encryption Rate

Type Encryption Rate (Mb/s)
CPU 2.32
GPU 12.00

6 RESULTS

Tables 3 and 4 show the average number of complete AES encryptions per-
formed on both the CPU and GPU and the average encryption rate.

7 PERFORMANCE ANALYSIS

Considering the results of both the CPU and GPU implementations in table
4 the GPU outperforms the CPU by 5.17 times. It is important to gain
a deeper understanding of what causes this vast performance increase. In
general GPUs are slower than CPUs on the clock speed basis the performance
gain is not due to this. Figure 5 shows the results of the GPU implementation
of AES encryption with increasing numbers of states tiled into the the view
port. It may seem retrogressive to look at performance results with smaller
tiling, but it is instructive in understanding how the results in table 3 are
achieved. It can be seen from figure 5 that data volume is not bottle-necking
the encryption process, as when more data is tiled into the view port the
encryption rate increases. GPUs perform well on large streams on uniform
data and this statement is mirrored by the graph. Using a view port of
1024x1024 and tiling the states, as detailed in subsection 4.3, allowed all
of them to be encrypted in parallel. This allowed for far more data to be
encrypted per rendering. A CPU cannot do this, thus gains nothing from
being passed more concurrent data as it all needs to be processed sequentially
anyway. Figure 5 implies that more blocks will yield even higher encryption
rates. There is a limit to the size of the renderable surface while maintaining
a 1:1 aspect ratio. This problem can be circumvented in a number of ways

9



Figure 5: AES Encryption Rate

100 200 300 400 500 600 700 800 900 1000

2

4

6

8

10

12

Viewport Dimension (DxD)

E
nc

ry
pt

io
n 

R
at

e 
(M

B
/s

)

but these methods are not general and as a result is one of the advantages
of GPGPU frameworks like CUDA and CTM.

8 CONCLUSION

The results in section 6 show that high performance encryption is possible
on the GPU. The unoptimized implementation used exhibited large perfor-
mance increases over the CPU implementation. The results show that this
performance increase is due to the parallel processing nature of the GPU
and its ability to operate on more than one data item concurrently. By tiling
more that one state into the view port the GPU is able to take advantage
of the per-stage parallelism of AES and yield large performance gains. As
mentioned on the outset the implementation was restricted to a canonical
method such that it could illustrate a proof of concept that is invariable
across different hardware configurations. In recent months a large emphasis
has been placed on the computing power of GPUs and as a result general
computing framework have been released from both NVIDIA and ATI. These
allow for more fine grained thread control of the execution of the code which
is beyond the OpenGL implementation presented here. The advantage of
the implementation presented here is that is that it achieves the same ends
as an implementation on CUDA or CTM would but without the abstrac-
tion layer that masks the finer implementation details. The developments
in CUDA and CTM have largely eclipsed this kind of GPGPU development,

10



however it still remains important as a foundation of understanding. This
implementation paves the way for implementing further mainstream crypto-
graphic algorithms like 3DES and Blowfish on the GPU and making similar
performance analyses.

References

[1] The cg language. Tech. rep., NVIDIA Corporation (Available Online:
http://developer.nvidia.com/).

[2] Close to the metal project, amd/ati. Available Online:
http://sourceforge.net/projects/amdctm/.

[3] Cuda, nvidia corporation. Available Online: http://www.nvidia.com/.

[4] High level shading language, microsoft corporation. Available Online:
http://msdn.microsoft.com/.

[5] The openssl project. Available Online: http://www.openssl.org/.

[6] Federal Information Processing Standards Publication 197, ADVANCED
ENCRYPTION STANDARD (AES). 2001.

[7] Christophe De Cannière, B. P. Triv-
ium specifications. Available Online:
http://www.ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf.

[8] Fernando, R., and Kilgard, M. The Cg Tutorial. Addison-Wesley
Professional, 2003.

[9] Kammer, R. G. Federal Information Processing Standards Publica-
tion, DATA ENCRYPTION STANDARD (DES). U.S. Department of
Commerce/National Institute of Standards and Technology, 1999.

[10] Pilkington, N. An investigation into general processing on graph-
ics processing units [unpublished]. Department of Computer Science,
Rhodes University, South Africa.

[11] Rost, R. The opengl shading language. Available Online:
http://www.opengl.org/.

11



[12] Schneider, B. The blowfish encryption algorithm.
http://www.schneier.com/blowfish.html.

12


