

AN EXAMINATION OF THE GENERIC MEMORY

CORRUPTION EXPLOIT PREVENTION

MECHANISMS ON APPLE'S LEOPARD OPERATING

SYSTEM

Haroon Meer

SensePost, Rhodes University

haroon@sensepost.com

AN EXAMINATION OF THE GENERIC MEMORY

CORRUPTION EXPLOIT PREVENTION

MECHANISMS ON APPLE'S LEOPARD OPERATING

SYSTEM

ABSTRACT

The Win32 platform has long been the whipping boy of memory
corruption attacks and malware, which has forced Microsoft into
implementing aggressive anti-exploitation mechanisms into their newer
Operating Systems. Apple's Mac OS X (Leopard) has had a much
smoother run, both in the media, and in terms of high profile attacks and
the reason for this is less clear.

In light of Apple's increased market-share, a comparison between
Microsoft's defences and Apple's defences is required as the number of
anti-exploitation techniques increases with time. In order to produce a
side-by-side comparison, an overview of memory corruption attacks is
provided and the common generic anti-exploitation techniques for these
attacks are enumerated and described. For each operating system, the
quality and effective of each implemented defence is evaluated.

The results of the study show that Leopard trails Windows Vista in
both the number of defences, as well as the quality and effectiveness of the
defences that are implemented.

KEY WORDS

exploit memory corruption stack heap shellcode overflow ret-2-libc

1 INTRODUCTION
This paper will cover the basics of memory corruption exploits, and will
then examine how Microsoft Windows Vista and Apple MacOS X
Leopard combat these attacks in their default state. The intention is to
examine how Apple’s Leopard measures up against the automatic exploit
mitigations built into Vista.

In the interest of brevity and in order to remain focused, this paper will
exclude comparisons between the built in firewalls, sandboxing
capabilities or attacks that are not directly related to the execution of
arbitrary code through memory corruption attacks. Discussion relating to
the comparison of these other security features can be found in
presentations and papers delivered by developers from Microsoft and
Apple respectively [1, 2].

The remainder of the paper is structured as follows: Section 2
provides background on memory corruption attacks, Section 3 details and
describes generic defences against memory corruption as well as attacks
that bypass the defences, a comparison and analysis is provided in Section
4 and we conclude in Section 5.

2 MEMORY CORRUPTION ATTACKS
Memory corruption attacks have been publicly discussed, at least since the
1988 Morris worm, which exploited a buffer overflow vulnerability in the
fingerd daemon as its primary attack vector [3]. Aleph1's seminal paper
Smashing the Stack for Fun and Profit [4] publicised such attacks and
prompted the widespread development of techniques to exploit such
vulnerabilities. After many years of simply asking developers to write
more secure code, operating system vendors and the designers of
compilers decided to make changes to make exploitation more difficult for
attackers. These anti exploitation measures now ship by default in most
modern operating systems [5, 6, 7, 8] with some packages offering them
as after market add-ons [9].

Memory corruption exploitation refers to the class of attacks that
rely on ones ability to hijack the execution flow of a program by
corrupting the applications memory space through a number of different
possible attack vectors. The two most popular techniques of Stack and
heap based exploitation are discussed below.

2.1 Stack Overflow Basics

Figure 1 − Running program and its Memory Layout

The snippet of code in Figure 1 is the canonical example of a typical
stack based buffer overflow.

The disassembly of the main routine seen in the bottom left corner of the
figure (labelled “A”), shows the address of the next instruction to be
executed after the function foo() returns (0x00001fcf).

The top left portion of the diagram (labelled “B”) shows the state of
the Stack after the strcpy() function has run. We see how the characters
“BBBBCCCCDDDDEEE” are copied on the stack which is growing
downwards towards the other local variable (int i) and the saved return
address (0x00001fcf).

As can be seen from the diagram, attempting to copy a buffer of
greater than 15 chars length will result in strcpy() copying beyond the
bounds of the buff buffer. Enough characters and the string can continue
overwriting the integer i, the saved frame pointer, and eventually the saved
return address.

Traditional stack overflow attacks aim at overwriting the saved
return address on the stack. The plan would be to place executable code
somewhere reachable in memory (possibly within the overflowed buffer).
The address of this code is then used to overwrite the saved return address
on the stack. When the function terminates, the overwritten address is
popped off the stack, and execution returns to that location in memory.

2.2 Heap Overflow Basics
Heap overflows operate on a similar assumption to the traditional

stack overflow, i.e. that the attacker has the ability to write beyond the
bounds of a buffer. The major differentiator is that the heap does not hold
a saved instruction pointer to overwrite, and is generally harder to tame.
The overwriting of a saved function pointer on the heap [10] or
overwriting of security sensitive values [11] are easy to understand and
fairly commonly exploited but does not lend itself to a generic attack
class.

A classic attack pattern relating to the heap however is known as
“the arbitrary 4 byte overwrite”. Heap allocations (and de-allocations) are
managed by maintaining a doubly linked list. Each heap chunk that is
allocated includes meta-data used for heap management. The information
we care about for the purposes of exploitation is traditionally referred to as
the flink and blink pointers (ptr->next and ptr->previous).

Figure 2 − The Free-List Linked List

Figure 2 is an example of the Free-List linked list, which maintains the
chain of free heap memory on an OS X machine.

Figure 3 − The effects of an UNLINK operation

Figure 3 demonstrates what happens during a normal unlink
operation, when a heap chunk is allocated. When FREE BLOCK-B is
unlinked and removed from the free list, the unlink operation updates the
ptr->next record of it’s ptr->previous block (FREE BLOCK-A) with its
own ptr->next value (0x001008e0) and updates the ptr->previous record
of the block pointed to by its ptr->next block (FREE BLOCK-C) with it’s
own ptr->previous value (0x00100120).

Clearly an overflow in chunk-BUSY_BLOCK would allow an
attacker to overwrite the meta-information of FREE BLOCK-B
(0x00100500) including the ptr->next and ptr->previous pointers.
Controlling these pointers means that we are able to write an arbitrary 4-
byte value (taken from B’s ptr->next) to an arbitrary location (pointed to
by B’s ptr->previous) in memory.

This attack vector is fairly well understood and explored in the
Win32 and Linux worlds.

3 GENERIC DEFENCES (AND THEIR BYPASSES)
While specific defensive coding techniques are necessary to completely
address vulnerabilities in code, several generic defenses have been
introduced into most operating systems over the past few years. The most
popular of these are discussed below.

3.1 Non Executable Stack
Although quickly worked around by researchers like Rafal Wojtczuk [12]
and John McDonald [13], one of the first generic defences against memory
corruption attacks was the introduction of the non-executable stack [14].
This protection (as implied by its name) aims to ensure that even if an
attacker is able to redirect execution flow into his attacker controlled
buffer (traditionally stored on the stack), the code would not execute, since
the stack would be marked non-executable.

Today the Windows Family (XP, Vista, Win2k3) and Mac OS X
(Leopard) operating systems make use of modern processor advances (NX
bit) [15] to mark the STACK segment as non-executable. This can be
tested fairly easily. To illustrate this, one can copy shellcode [16] to a
locally declared buffer that is stored on the stack and make use of a
function pointer to execute this code. The code can be seen below in figure
4.

Figure 4 − Executing code from the Stack through a function pointer

Running the code in Figure 4 causes a Segmentation Fault, and
examining the program in a debugger yields the following error:

One can tell clearly that OS X has thrown an EXC_BAD_ACCESS error
while trying to execute code at 0xbfffff8bb (an address on the stack).

3.2 Bypassing the Non-Executable Stack
Ret-2-libc (return to libc), another widely known attack pattern, evolved
quickly to deal with non-executable stacks [17]. This pattern relies on the
fact that even if the stack is marked as non-executable, library code is
reachable within the processes memory space and is marked as executable.
In its most common variant, the attacker will aim to overwrite saved EIP (
Execution Instruction Pointer) with the location of the system command
(which traditionally resides in libc, explaining its name), while preparing a
fake stack frame containing the arguments to be passed to the system call.
(In the canonical ret-2-libc attack, the attacker passes “/bin/sh” as the
parameter to system, in order to launch a shell).

With enough creativity, multiple fake frames can be constructed
with chained return-2-libc calls which can be used to devastating effect. In
2007 it was a ret-2-libc attack that did the heavy lifting of jail-breaking the
iPhone after the initial libtiff vulnerability [18] was exploited [19].

3.3 Non Executable Heap
With the stack being off-limits as a destination for attacker supplied code,
the next logical target is the process heap. Several innovative techniques
sprung up to cater for this with one of the most impactful being the Heap
Spraying technique described by Skylined [20]. Realising that calls to
create or concatenate JavaScript strings result in these strings being
created on the heap, Skylined made use of a simple loop construct to
create multiple copies of his string (encoded shellcode) on the heap. He

Figure 5 − Kernel Failure when attempting to execute code form the stack

then redirected execution to the heap where his shellcode would run. (The
technique is called “spraying” since, in the absence of knowing the exact
location of the shellcode on the heap, the attacker creates multiple copies
of the shellcode on the heap (preceded by large NOP sleds) in order to
increase the likelihood that a jump to the heap would result in code
execution.)

Skylined’s heap spraying attack targeted Internet Explorer but
subsequent attacks have applied the same technique to Adobe Acrobat
Reader [21] and SQL Server [22]. In 2006 Alexander Sotirov took this
vector to a new level with a paper titled Heap Feng Shui in JavaScript
[23], which refined the use of JavaScript to give surgical accuracy over the
Heap for such attacks.

Starting with Windows XP-SP2, the heap is also marked as non-
executable, to some degree mitigating this problem (unless a process
specifically marks the page as executable instead.) While vmmstat on OS
X reports the heap as non-executable, it appears as if the processors NX
capability is not utilized to protect this area, allowing code to be executed
on the heap. Sample code to validate this (which executes with no error) is
shown in Figure 6.

Figure 6 − Code to execute shellcode from the heap

3.4 Safe un-linking of Heap Chunks
With XP-SP2 Microsoft introduced the concept of safe unlinking during
memory management [24]. Before using the flink and blink pointers
(discussed earlier), the heap allocator checks to ensure that flink->blink
and blink->flink both point at the current block. This prevents an attacker
from using the unlink operation to perform an arbitrary 4-byte overwrite.
With XP-SP2, Microsoft also includes a single byte cookie in the heap
metadata which is checked during unlink [25]. An incorrect cookie value
indicates that heap corruption has taken place. Vista takes this protection
further by encrypting important metadata (XORing the metadata with a
random 32bit value) and decrypting it before use. At the time of writing no
such protection exists within OS X Leopard.

3.5 Address Space Layout Randomization (ASLR)
All of the attacks discussed above rely on the attacker being able to

predictably locate objects in memory. Without this ability, most remote
execution attacks (resulting from memory corruption) can be mitigated
down to process crashes. Following from the pioneering work on the PAX
project [26], researcher Matt Miller released WehnTrust [27], which
offered full address space layout randomization on the Windows platform,
and Microsoft introduced ASLR with the release of Windows Vista. Early
versions of the implementation suffered from flaws and extensive work
was done by Ollie Whitehouse to examine the amount of randomness in
the Vista ASLR implementation [28]. Today Windows XP, Vista and
Server 2003 boast an ASLR implementation that poses a significant hurdle
to an attacker who is un-aided by a supplementary bug that leaks memory
layout information.

Apple’s implementation of ASLR however leaves a lot to be desired
and in its current incarnation has been dubbed by some researchers as
Partial Library Randomization [29]. Leopard only randomizes the
addresses of most libraries within the process memory space. This ignores
the randomization of the stack, the heap, the image itself or even the
address of some key libraries in a race where a single predictable location
can result in the race being lost. In addition to this the current random
locations are documented in the world readable file
/var/db/dyld/dyld_shared_cache_i386.map allowing system local attackers
the full knowledge necessary to carry out an attack [29].

3.6 Compiler Level Protections
Crispin Cowan first introduced Stack Guard in 1998 [30]. A compile

time protection, Stack Guard worked by placing a virtual canary on the
stack in front of the saved return address. Any attempt to overwrite the
return address would also result in altering the canary which is checked
when the function returns. Microsoft independently created the /GS
(Guard Stack) compiler flag to obtain the same results [31]. This
protection has come under fire several times and Microsoft’s ‘/GS’
implementation has been through several iterations, until finally arriving at
today’s version which includes advanced heuristics at compile time to re-
order variables on the stack. This means that in the example application
shown in Figure 1, the compiler would have re-ordered the variables so
that buff would not have been able to overflow the i integer.)

Although not as advanced in all respects as its /GS counterpart,
Leopard ships with a version of GCC that supports stack protection
through the ProPolice project and the –fstack-protection compile time
option. While researchers like Whitehouse [28] and Maynor [32] have
released tools to identify which binaries on a Vista machine are not
compiled with /GS protection, the situation on Leopard is almost perfectly
reversed, with the majority of applications on Leopard having not been
compiled with this kind of protection enabled.

3.7 Caveat
We have ignored an entire attack pattern by failing to discuss the

class of attacks directed against Structure Exception Handlers (SEH). The
Windows OS makes use of a SEH routine that leaves the platform
uniquely vulnerable to an attack pattern, which aims at replacing the
structured exception handler with an address of our choosing, before
causing an exception. Vista makes use of a new protection mechanism
called SEHOP [33] to protect against such attacks. OS X like most Unix
derivatives make use of signals as opposed to a default exception handler
making Leopard not vulnerable to this class of attacks by default.

4 COMPARISONS
The findings so far are documented in Table 1, below.

Table 1 − Comparisons between Vista and Leopard

Attack Pattern Windows Vista OS X Leopard

Non-Executable Stack YES YES

Non-Executable Heap YES NO

Safe Heap Unlinking YES NO

A.S.L.R FULL Partial

Compiled with Stack Protection Partial Partial

S.E.H exploit protection SEHOP Not Applicable

It is fairly clear from Table 1 that Apple lags significantly behind its
Windows counterpart when it comes to generic anti-exploitation defences.
What is unclear is why the lack of said defences has not led to some of the
large scale attacks (like Slammer, or Code-Red), that have been witnessed
against Windows machines in the past [34, 35].

A market share that is too small to attract real malevolence is an
argument that is often made, but this does not stand up to the counterpoint
of the literally hundreds of vulnerabilities reported weekly in obscure,
relatively unused code-bases [36]. The argument that Apple simply makes
less exploitable mistakes in their code is also untenable as researchers
have had no difficulty exploiting OS X in public contests, when the need
arose [37].

It is our belief that one of the explanations is that the client operating
system OS X is being compared to the server operating systems in the
Windows family. Both systems have different natural adversaries and so
have different risk profiles. It can be postulated that OS X currently sits in
an unusual niche, staying off the radar of server-attackers while below the
threshold to make it an attractive target for attackers wishing to capture
large volumes of desktop computers (for botnets or similar activities).

Apple would be well advised to make good use of their time in this
niche to learn from the mistakes made by those before them, because as
their market share steadily rises, they steadily inch closer to moving out of
this protected space. They currently have a narrow window in which they
can refine their defences. This would include a more robust ASLR
implementation and can enforce the mandatory use of compile time stack
protection to raise the bar on the requirements for a successful attack
against the system.

5 CONCLUSION
We have demonstrated the basics of memory corruption exploits, and have
examined how Microsoft Windows Vista and Apple’s MacOS X Leopard
combat these attacks in their default state. In this analysis OS X has been
weighed and measured, and has come up wanting.

The next release of OS X, named Snow Leopard is currently in Beta and
promises to improve the security posture of the system. It remains to be
seen if the controls mentioned in this paper have been implemented or
improved upon at all.

We hope that Apple is able to make the necessary improvements before it
too is forced into altering its views on generic OS protection mechanisms
through the media frenzy that follows public security breaches.

6 REFERENCES
[1] Rafal Lukawiecki. “Windows Vista Security”.

http://download.microsoft.com/download/7/0/5/7058e678-6151-448e-
a53b-43b83b5d309e/Windows%20Vista%20Security.ppt (2006)

[2] Jordan Hubbard. “OS X, From the Server Room to Your Pocket”. In
proceedings of the 22nd Large Installation System Administration
Conference. (12 November 2008)

[3] E. H. Spafford. “Crisis and aftermath”. In Communications of the ACM
archive, Volume 32 , Issue 6 (June 1989) (Pages: 678 – 687)

[4] Aleph One. “Smashing the stack for fun and Profit”. Phrack Magazine 7,
49 (Fall 1997); http://www.phrack.com/issues.html?issue=49&id=14.

[5] “x86: Solaris Supports the no execute Bit”. Solaris10 Release Notes.
http://docs.sun.com/app/docs/doc/817-
0552/6mgbi4fgg?l=en&a=view&q=PROT_EXEC (2006)

[6] Theo de Raadt. “Exploit Mitigation Techniques (in OpenBSD).”
http://www.openbsd.org/papers/auug04/index.html (2004).

[7] “Data Execution Prevention”, Microsoft Technet,
http://technet.microsoft.com/en-us/library/cc738483.aspx (2009)

[8] Arjan van de Ven. “New Security Enhancements in Red Hat Enterprise
Linux v.3, update 3”. (August 2004).

[9] “PaX”. http://pax.grsecurity.net/

[10] Solar Designer. “Bugtraq: Linux SuperProbe exploit”.
http://seclists.org/bugtraq/1997/Mar/0011.html (05 Mar 1997).

[11] “Microsoft IIS HTR Chunked Encoding heap overflow allows arbitrary
code “.Symantec security response center. (12 Jun 2002).
http://www.symantec.com/security_response/vulnerability.jsp?bid=2033.

[12] Rafal Wojtczuk. “Defeating Solar Designer's Non-executable Stack
Patch”. (30 January 1998). http://insecure.org/sploits/non-
executable.stack.problems.html.

[13] John McDonald. “Bugtraq: Defeating Solaris/SPARC Non-Executable
Stack Protection”. (03 Mar 1999).
http://seclists.org/bugtraq/1999/Mar/0004.html.

[14] Solar Designer. “Non-Executable User Stack”.
http://www.false.com/security/linux-stack/.

[15] http://en.wikipedia.org/wiki/NX_bit

[16] http://en.wikipedia.org/wiki/Shellcode

[17] Solar Designer. “lpr LIBC RETURN exploit”. (10 Aug 1997)
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html.

[18] “About the security content of iPhone v1.1.2 and iPod touch v1.1.2
Updates”. http://support.apple.com/kb/HT2170. (2007).

[19] Niacin, “iTouch/iPhone exploit source code released”,
http://toc2rta.com/?q=node/30. (21 Oct 2007)

[20] Berend-Jan Wever (SkyLined). “Internet Exploiter 3: Technical details”.
(01 Dec 2004).
http://skypher.com/wiki/index.php?title=Www.edup.tudelft.nl/~bjwever/
details_msie_ani.html.php.

[21] Security Updates available for Adobe Reader and Acrobat versions 9 and
earlier. (19 Feb 2009).
http://www.adobe.com/support/security/advisories/apsa09-01.html

[22] Bernhard Mueller (SEC Consult Vulnerability Lab). “Microsoft SQL
Server sp_replwritetovarbin limited memory overwrite vulnerability“.
(09 Dec 2008). https://www.sec-consult.com/files/20081209_mssql-
sp_replwritetovarbin_memwrite.txt.

[23] Sotirov, A. “Heap Feng Shui in JavaScript”. Blackhat Europe 2007.
http://www.phreedom.org/research/heap-feng-shui/

[24] “A detailed description of the Data Execution Prevention (DEP) feature
in Windows XP Service Pack 2”. (26 Sep 2006).
http://support.microsoft.com/kb/875352.

[25] Johnson, R. “Windows Vista Exploitation Countermeasure”. (29 Sep
2006). http://www.authorstream.com/presentation/Mentor-6833-
rjohnson-Windows-Vista-Exploitation-Countermeasure-windows-vista-
exploitation-countermeasures-ppt-powerpoint.

[26] “PaX”. http://pax.grsecurity.net/

[27] “WehnTrust, Host Intrusion Prevention System for Win2000, XP and
Win2003”. http://www.codeplex.com/wehntrust

[28] Ollie Whitehouse, “An Analysis of Address Space Layout
Randomization on Windows Vista”. (2007).
http://www.blackhat.com/presentations/bh-dc-
07/Whitehouse/Presentation/bh-dc-07-Whitehouse.pdf .

[29] Charlie Miller, Dino Dai Zovi, "The Mac Hackers Handbook", (2009).
Wiley Publishing.

[30] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beat- tie, A. Grier, P.
Wagle, Q. Zhang, “StackGuard: Automatic Adaptive Detection and

Prevention of Buffer-Overflow At- tacks”. (1998). Proceedings of the
7th USENIX Security Conference.

[31] Brandon Bray, Visual Studio Team. “Compiler Security Checks In
Depth”. (Feb 2002). http://msdn.microsoft.com/en-
us/library/aa290051.aspx.

[32] Maynor D. “Looking Glass”. (10 Apr 2004).
http://www.erratasec.com/lookingglass.html.

[33] “Windows Vista Service Pack 1 and Windows Server 2008 now include
support for Structured Exception Handling Overwrite Protection
(SEHOP)“. (28 Jan 2009). http://support.microsoft.com/kb/956607/en-us.

[34] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. “Inside the Slammer Worm”. IEEE
Security & Privacy Magazine. (2003)

[35] David Moore, Colleen Shannon, Jeffery Brown. “Code-Red: a case study
on the spread and victims of an Internet worm”. Presented at the Internet
Measurement Workshop (IMW). (2002)

[36] United States Computer Emergency Readiness Team (US-CERT).
“Cyber Security Vulnerability Summaries per Week”. http://www.us-
cert.gov/cas/bulletins/.

[37] Matt Hines. “Mac Hacked Via Safari Browser in Pwn-2-Own Contest”.
http://securitywatch.eweek.com/apple/mac_hacked_via_safari_browser_i
n_pwn2own_contest.html. (20 Apr 2007)

