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ABSTRACT 

The Win32 platform has long been the whipping boy of memory 
corruption attacks and malware, which has forced Microsoft into 
implementing aggressive anti-exploitation mechanisms into their newer 
Operating Systems. Apple's Mac OS X (Leopard) has had a much 
smoother run, both in the media, and in terms of high profile attacks and 
the reason for this is less clear.  

In light of Apple's increased market-share, a comparison between 
Microsoft's defences and Apple's defences is required as the number of 
anti-exploitation techniques increases with time. In order to produce a 
side-by-side comparison, an overview of memory corruption attacks is 
provided and the common generic anti-exploitation techniques for these 
attacks are enumerated and described. For each operating system, the 
quality and effective of each implemented defence is evaluated. 

The results of the study show that Leopard trails Windows Vista in 
both the number of defences, as well as the quality and effectiveness of the 
defences that are implemented. 
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1 INTRODUCTION 
This paper will cover the basics of memory corruption exploits, and will 
then examine how Microsoft Windows Vista and Apple MacOS X 
Leopard combat these attacks in their default state. The intention is to 
examine how Apple’s Leopard measures up against the automatic exploit 
mitigations built into Vista.    



  

In the interest of brevity and in order to remain focused, this paper will 
exclude comparisons between the built in firewalls, sandboxing 
capabilities or attacks that are not directly related to the execution of 
arbitrary code through memory corruption attacks. Discussion relating to 
the comparison of these other security features can be found in 
presentations and papers delivered by developers from Microsoft and 
Apple respectively [1, 2]. 

The remainder of the paper is structured as follows: Section 2 
provides background on memory corruption attacks, Section 3 details and 
describes generic defences against memory corruption as well as attacks 
that bypass the defences, a comparison and analysis is provided in Section 
4 and we conclude in Section 5. 

2 MEMORY CORRUPTION ATTACKS 
Memory corruption attacks have been publicly discussed, at least since the 
1988 Morris worm, which exploited  a buffer overflow vulnerability in the 
fingerd daemon as its primary attack vector [3]. Aleph1's seminal paper 
Smashing the Stack for Fun and Profit [4]  publicised such attacks and 
prompted the widespread development of techniques to exploit such 
vulnerabilities. After many years of simply asking developers to write 
more secure code, operating system vendors and the designers of 
compilers decided to make changes to make exploitation more difficult for 
attackers. These anti exploitation measures now ship by default in most 
modern operating systems [5, 6, 7, 8] with some packages offering them 
as after market add-ons [9]. 

Memory corruption exploitation refers to the class of attacks that 
rely on ones ability to hijack the execution flow of a program by 
corrupting the applications memory space through a number of different 
possible attack vectors. The two most popular techniques of Stack and 
heap based exploitation are discussed below. 



  

2.1 Stack Overflow Basics 

Figure 1 − Running program and its Memory Layout 

The snippet of code in Figure 1 is the canonical example of a typical 
stack based buffer overflow. 

The disassembly of the main routine seen in the bottom left corner of the 
figure (labelled “A”), shows the address of the next instruction to be 
executed after the function foo() returns (0x00001fcf). 

The top left portion of the diagram (labelled “B”) shows the state of 
the Stack after the strcpy() function has run. We see how the characters 
“BBBBCCCCDDDDEEE” are copied on the stack which is growing 
downwards towards the other local variable (int i) and the saved return 
address (0x00001fcf). 

As can be seen from the diagram, attempting to copy a buffer of 
greater than 15 chars length will result in strcpy() copying beyond the 
bounds of the buff buffer. Enough characters and the string can continue 
overwriting the integer i, the saved frame pointer, and eventually the saved 
return address. 



  

Traditional stack overflow attacks aim at overwriting the saved 
return address on the stack. The plan would be to place executable code 
somewhere reachable in memory (possibly within the overflowed buffer). 
The address of this code is then used to overwrite the saved return address 
on the stack. When the function terminates, the overwritten address is 
popped off the stack, and execution returns to that location in memory. 

2.2 Heap Overflow Basics 
Heap overflows operate on a similar assumption to the traditional 

stack overflow, i.e. that the attacker has the ability to write beyond the 
bounds of a buffer. The major differentiator is that the heap does not hold 
a saved instruction pointer to overwrite, and is generally harder to tame. 
The overwriting of a saved function pointer on the heap [10] or 
overwriting of security sensitive values [11] are easy to understand and 
fairly commonly exploited but does not lend itself to a generic attack 
class. 

A classic attack pattern relating to the heap however is known as 
“the arbitrary 4 byte overwrite”. Heap allocations (and de-allocations) are 
managed by maintaining a doubly linked list. Each heap chunk that is 
allocated includes meta-data used for heap management. The information 
we care about for the purposes of exploitation is traditionally referred to as 
the flink and blink pointers (ptr->next and ptr->previous).  

 

Figure 2 − The Free-List Linked List 

 



  

Figure 2 is an example of the Free-List linked list, which maintains the 
chain of free heap memory on an OS X machine.  

 

Figure 3 − The effects of an UNLINK operation 

 

Figure 3 demonstrates what happens during a normal unlink 
operation, when a heap chunk is allocated. When FREE BLOCK-B is 
unlinked and removed from the free list, the unlink operation updates the 
ptr->next record of it’s ptr->previous block (FREE BLOCK-A) with its 
own ptr->next value (0x001008e0) and updates the ptr->previous record 
of the block pointed to by its ptr->next block (FREE BLOCK-C) with it’s 
own ptr->previous value (0x00100120).  

Clearly an overflow in chunk-BUSY_BLOCK would allow an 
attacker to overwrite the meta-information of FREE BLOCK-B 
(0x00100500) including the ptr->next and ptr->previous pointers. 
Controlling these pointers means that we are able to write an arbitrary 4-
byte value (taken from B’s ptr->next) to an arbitrary location (pointed to 
by B’s ptr->previous) in memory. 

This attack vector is fairly well understood and explored in the 
Win32 and Linux worlds. 



  

3 GENERIC DEFENCES (AND THEIR BYPASSES) 
While specific defensive coding techniques are necessary to completely 
address vulnerabilities in code, several generic defenses have been 
introduced into most operating systems over the past few years. The most 
popular of these are discussed below. 

3.1 Non Executable Stack 
Although quickly worked around by researchers like Rafal Wojtczuk [12] 
and John McDonald [13], one of the first generic defences against memory 
corruption attacks was the introduction of the non-executable stack [14]. 
This protection (as implied by its name) aims to ensure that even if an 
attacker is able to redirect execution flow into his attacker controlled 
buffer (traditionally stored on the stack), the code would not execute, since 
the stack would be marked non-executable. 

Today the Windows Family (XP, Vista, Win2k3) and Mac OS X 
(Leopard) operating systems make use of modern processor advances (NX 
bit) [15] to mark the STACK segment as non-executable. This can be 
tested fairly easily. To illustrate this, one can copy shellcode [16] to a 
locally declared buffer that is stored on the stack and make use of a 
function pointer to execute this code. The code can be seen below in figure 
4. 

Figure 4 − Executing code from the Stack through a function pointer 

Running the code in Figure 4 causes a Segmentation Fault, and 
examining the program in a debugger yields the following error: 



  

 
One can tell clearly that OS X has thrown an EXC_BAD_ACCESS error 
while trying to execute code at 0xbfffff8bb (an address on the stack). 

3.2 Bypassing the Non-Executable Stack 
Ret-2-libc (return to libc), another widely known attack pattern, evolved 
quickly to deal with non-executable stacks [17]. This pattern relies on the 
fact that even if the stack is marked as non-executable, library code is 
reachable within the processes memory space and is marked as executable. 
In its most common variant, the attacker will aim to overwrite saved EIP ( 
Execution Instruction Pointer) with the location of the system command 
(which traditionally resides in libc, explaining its name), while preparing a 
fake stack frame containing the arguments to be passed to the system call. 
(In the canonical ret-2-libc attack, the attacker passes “/bin/sh” as the 
parameter to system, in order to launch a shell). 

With enough creativity, multiple fake frames can be constructed 
with chained return-2-libc calls which can be used to devastating effect. In 
2007 it was a ret-2-libc attack that did the heavy lifting of jail-breaking the 
iPhone after the initial libtiff vulnerability [18] was exploited [19]. 

3.3 Non Executable Heap 
With the stack being off-limits as a destination for attacker supplied code, 
the next logical target is the process heap. Several innovative techniques 
sprung up to cater for this with one of the most impactful being the Heap 
Spraying technique described by Skylined [20]. Realising that calls to 
create or concatenate JavaScript strings result in these strings being 
created on the heap, Skylined made use of a simple loop construct to 
create multiple copies of his string (encoded shellcode) on the heap. He 

Figure 5 − Kernel Failure when attempting to execute code form the stack 



  

then redirected execution to the heap where his shellcode would run. (The 
technique is called “spraying” since, in the absence of knowing the exact 
location of the shellcode on the heap, the attacker creates multiple copies 
of the shellcode on the heap (preceded by large NOP sleds) in order to 
increase the likelihood that a jump to the heap would result in code 
execution.) 

Skylined’s heap spraying attack targeted Internet Explorer but 
subsequent attacks have applied the same technique to Adobe Acrobat 
Reader [21] and SQL Server [22]. In 2006 Alexander Sotirov took this 
vector to a new level with a paper titled Heap Feng Shui in JavaScript 
[23], which refined the use of JavaScript to give surgical accuracy over the 
Heap for such attacks.  

Starting with Windows XP-SP2, the heap is also marked as non-
executable, to some degree mitigating this problem (unless a process 
specifically marks the page as executable instead.) While vmmstat on OS 
X reports the heap as non-executable, it appears as if the processors NX 
capability is not utilized to protect this area, allowing code to be executed 
on the heap. Sample code to validate this (which executes with no error) is 
shown in Figure 6. 

 

Figure 6 − Code to execute shellcode from the heap 



  

3.4 Safe un-linking of Heap Chunks 
With XP-SP2 Microsoft introduced the concept of safe unlinking during 
memory management [24]. Before using the flink and blink pointers 
(discussed earlier), the heap allocator checks to ensure that flink->blink 
and blink->flink both point at the current block. This prevents an attacker 
from using the unlink operation to perform an arbitrary 4-byte overwrite. 
With XP-SP2, Microsoft also includes a single byte cookie in the heap 
metadata which is checked during unlink [25]. An incorrect cookie value 
indicates that heap corruption has taken place. Vista takes this protection 
further by encrypting important metadata (XORing the metadata with a 
random 32bit value) and decrypting it before use. At the time of writing no 
such protection exists within OS X Leopard. 

3.5 Address Space Layout Randomization (ASLR) 
All of the attacks discussed above rely on the attacker being able to 

predictably locate objects in memory. Without this ability, most remote 
execution attacks (resulting from memory corruption) can be mitigated 
down to process crashes. Following from the pioneering work on the PAX 
project [26], researcher Matt Miller released WehnTrust [27], which 
offered full address space layout randomization on the Windows platform, 
and Microsoft introduced ASLR with the release of Windows Vista. Early 
versions of the implementation suffered from flaws and extensive work 
was done by Ollie Whitehouse to examine the amount of randomness in 
the Vista ASLR implementation [28]. Today Windows XP, Vista and 
Server 2003 boast an ASLR implementation that poses a significant hurdle 
to an attacker who is un-aided by a supplementary bug that leaks memory 
layout information. 

Apple’s implementation of ASLR however leaves a lot to be desired 
and in its current incarnation has been dubbed by some researchers as 
Partial Library Randomization [29]. Leopard only randomizes the 
addresses of most libraries within the process memory space. This ignores 
the randomization of the stack, the heap, the image itself or even the 
address of some key libraries in a race where a single predictable location 
can result in the race being lost. In addition to this the current random 
locations are documented in the world readable file 
/var/db/dyld/dyld_shared_cache_i386.map allowing system local attackers 
the full knowledge necessary to carry out an attack [29]. 



  

 

3.6 Compiler Level Protections 
Crispin Cowan first introduced Stack Guard in 1998 [30]. A compile 

time protection, Stack Guard worked by placing a virtual canary on the 
stack in front of the saved return address. Any attempt to overwrite the 
return address would also result in altering the canary which is checked 
when the function returns. Microsoft independently created the /GS 
(Guard Stack) compiler flag to obtain the same results [31]. This 
protection has come under fire several times and Microsoft’s ‘/GS’ 
implementation has been through several iterations, until finally arriving at 
today’s version which includes advanced heuristics at compile time to re-
order variables on the stack. This means that in the example application 
shown in Figure 1, the compiler would have re-ordered the variables so 
that buff would not have been able to overflow the i integer.) 

Although not as advanced in all respects as its /GS counterpart, 
Leopard ships with a version of GCC that supports stack protection 
through the ProPolice project and the –fstack-protection compile time 
option. While researchers like Whitehouse [28] and Maynor [32] have 
released tools to identify which binaries on a Vista machine are not 
compiled with /GS protection, the situation on Leopard is almost perfectly 
reversed, with the majority of applications on  Leopard having not been 
compiled with this kind of protection enabled. 

3.7 Caveat 
We have ignored an entire attack pattern by failing to discuss the 

class of attacks directed against Structure Exception Handlers (SEH). The 
Windows OS makes use of a SEH routine that leaves the platform 
uniquely vulnerable to an attack pattern, which aims at replacing the 
structured exception handler with an address of our choosing, before 
causing an exception. Vista makes use of a new protection mechanism 
called SEHOP [33] to protect against such attacks. OS X like most Unix 
derivatives make use of signals as opposed to a default exception handler 
making Leopard not vulnerable to this class of attacks by default. 



  

4 COMPARISONS 
The findings so far are documented in Table 1, below. 

Table 1 − Comparisons between Vista and Leopard 

Attack Pattern Windows Vista OS X Leopard 

Non-Executable Stack YES YES 

Non-Executable Heap YES NO 

Safe Heap Unlinking YES NO 

A.S.L.R FULL Partial 

Compiled with Stack Protection Partial Partial 

S.E.H exploit protection SEHOP Not Applicable 

   

It is fairly clear from Table 1 that Apple lags significantly behind its 
Windows counterpart when it comes to generic anti-exploitation defences. 
What is unclear is why the lack of said defences has not led to some of the 
large scale attacks (like Slammer, or Code-Red), that have been witnessed 
against Windows machines in the past [34, 35]. 

A market share that is too small to attract real malevolence is an 
argument that is often made, but this does not stand up to the counterpoint 
of the literally hundreds of vulnerabilities reported weekly in obscure, 
relatively unused code-bases [36]. The argument that Apple simply makes 
less exploitable mistakes in their code is also untenable as researchers 
have had no difficulty exploiting OS X in public contests, when the need 
arose [37]. 

It is our belief that one of the explanations is that the client operating 
system OS X is being compared to the server operating systems in the 
Windows family. Both systems have different natural adversaries and so 
have different risk profiles. It can be postulated that OS X currently sits in 
an unusual niche, staying off the radar of server-attackers while below the 
threshold to make it an attractive target for attackers wishing to capture 
large volumes of desktop computers (for botnets or similar activities).  



  

Apple would be well advised to make good use of their time in this 
niche to learn from the mistakes made by those before them, because as 
their market share steadily rises, they steadily inch closer to moving out of 
this protected space. They currently have a narrow window in which they 
can refine their defences. This would include a more robust ASLR 
implementation and can enforce the mandatory use of compile time stack 
protection to raise the bar on the requirements for a successful attack 
against the system. 

5 CONCLUSION 
We have demonstrated the basics of memory corruption exploits, and have 
examined how Microsoft Windows Vista and Apple’s MacOS X Leopard 
combat these attacks in their default state. In this analysis OS X has been 
weighed and measured, and has come up wanting.  

The next release of OS X, named Snow Leopard is currently in Beta and 
promises to improve the security posture of the system. It remains to be 
seen if the controls mentioned in this paper have been implemented or 
improved upon at all. 

We hope that Apple is able to make the necessary improvements before it 
too is forced into altering its views on generic OS protection mechanisms 
through the media frenzy that follows public security breaches. 
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