USAGE CONTROL POLICY ENFORCEMENT IN
OPENOFFICE.ORG AND INFORMATION FLOW

C. Schaefer', T. Walter!, A. Pretschner?, M. Harvan?

'DOCOMO Euro-Labs
Germany
2Fraunhofer IESE
Germany
SETH Zurich
Information Security

Switzerland

![schaefer,walter]@docomolab-euro.com,

2Alexander.Pretschner@iese.fraunhofer.de, *mharvan@inf.ethz.ch

ABSTRACT

Usage control is a generalisation of access control addressing how data is to
be handled after it has been released. To control the data handling enforce-
ment mechanisms have to be in place where the data is being used. These
enforcement mechanisms can be implemented on different layers of the sys-
tem. One way to do the enforcement is on the application layer. This paper
describes how usage control policies can be enforced in OpenOffice.org using
the component technology UNO (Universal Network Objects) provided by
OpenOffice.org. The drawbacks and sketches how to overcome these are also
identified.

KEY WORDS

Information flow, usage control, policy enforcement

USAGE CONTROL POLICY ENFORCEMENT IN
OPENOFFICE.ORG AND INFORMATION FLOW

1 INTRODUCTION

In companies it is common to have a policy describing how sensitive infor-
mation is to be used (sometimes referred to as managed information). Sen-
sitive information can be construction plans for machines, documentation of
a product or anything else containing secret information of a company. Poli-
cies to protect company assets can be seen as usage control policies as they
go beyond standard access control policies. For example, it can be specified
that no user besides the author can edit a patent application (access control
policy), and that it must be stored in the company intranet only. Further,
copying and pasting information is allowed within the document but not into
another document (all the previous are usage control policies).

Theoretical work exists (see for example [4]) on how to specify these kind
of policies. With respect to the above mentioned usage control policies we
address three problems in this paper. First, it is not clear how to map
high level policies to low level policies that can be enforced. Second, it is
not obvious how to map actions on data, i.e. do not copy confidential data
into another document, to actions of processes on data, i.e. using an office
application and perform copy/paste. Third, we need to determine how to
control actions.

The solution we employ is to define an information low model for OpenOf-
fice.org (OO). This allows us to define where control is applicable in OO (third
of the above mentioned problems) and how high level policies are mapped
to low level policies understood by OO (first problem). Obviously, the OO
instance is the process that manipulates the data and it is this process to be
controlled (second problem).

To verify our approach we have developed an architecture and prototypi-
cal implementation using the Universal Network Objects (UNO) component
technology from OpenOffice.org. The implemented framework uses a descrip-
tion of what has to be enforced and intercepts all actions according to this
description. Actions (like Print a document) performed by OO can either be
allowed or forbidden; others (like Save as) can also be modified, e.g. allowing
only a specific file format and a specific directory where the document can
be saved. We show which requirements can be enforced by our architecture,

and provide examples of what we have implemented. Additionally we show
the limitations of our approach.

Our contributions are the design and implementation of usage control
enforcement in OpenOffice.org as well as the definition of an information
flow model for office like applications. The information flow model is the
basis for the development of the enforcement model. The enforcement model
is capable to control all the information going into and out of OO. These are
the first steps to an enforcement architecture for usage control policies.

The remainder of the paper is structured as follows. Section [2| introduces
the related work and describes how UNO is working. A description of the
information flow model is shown in Section Bl This is followed in Section 4
by a description of the architecture of the OpenOffice.org controller enforcing
the usage control policies. Section [5| lists some limitations of this approach
and is followed by the summary in section [6]

2 RELATED WORK

Usage control [10, 8] is a topic that has received some attention in the research
community recently. It is a generalisation of access control and deals with
how data is to be handled once it has been released to a third party. The
existing work has laid theoretical foundations for usage control by for example
specifying usage control languages. Digital rights mechanisms (DRM) are
part of usage control and can be used as enforcement mechanisms.

2.1 Usage Control Enforcement

A classification of enforcement mechanisms which are needed for usage con-
trol is introduced in [IT}, B]. Inhibit specifies actions that are forbidden like
it is forbidden to print a document. Finite delay specifies the class where an
action is delayed until some conditions are met, e.g. approval by manage-
ment before a patent application is filed. It might occur in a usage control
policy that a disclaimer “Printed by” has to be added to a document. This
forms the third class modify as some additional information before the actual
printing is added. The sending of a notification to someone else that the data
has been modified falls in the ezecute action category.

Another paper [11] looked into existing DRM mechanisms and analysed
which enforcement classes are supported by those mechanisms. The result
was that all DRM mechanisms supported the inhibit class but only a few

mechanisms supported more classes. But no analysed mechanism supported
all classes.

DRM systems, like the one used in Apple’s iTunes, are currently focused
on protection of multimedia content like audio and video. The mechanisms
mainly provide access control and control the distribution of the content by
not allowing to copy the content to other devices or only to a restricted
number of other devices. Approaches like Sealed Media [6] or Microsoft’s
RMS [1I] also exist which focus on the protection of documents. These ap-
proaches provide mechanisms for access control and the distribution of docu-
ments but again not all classes mentioned above like for example modify are
supported. Our approach goes beyond the existing ones providing support
for all enforcement classes.

2.2 OpenOffice.org and UNO

OpenOffice.org [3] is an open-source office software suite for word processing,
spreadsheets, presentations, graphics and databases. It stores all data in an
international open standard format (ODF - Open Document Format) [7].

OO provides an interface called UNO [2] with which OO can be controlled
by external programs. The external program can either be integrated into
OpenOffice as an extension (a plugin mechanism) or it can be a program
running independently.

2.2.1 Dispatch Framework

OO has a so called Dispatch Framework [2] which defines interfaces for a
generic communication between an office component (i.e. some functionality
provided by OO) and a user interface. This communication process handles
requests for command executions and gives information about the various
attributes of an office component. The user interface sends messages to the
office component and receives information from the office component.

The framework maintains a list of DispatchProviders. These Dispatch-
Providers contain information about what to do when some execution com-
mand is coming from the user interface. When a command is issued the first
DispatchProvider in the list suitable for this command performs all neces-
sary actions. A DispatchProvider can also perform part of the work for the
command and then pass on the control to another DispatchProvider which
is then finishing the task.

2.2.2 Commands

Commands are the basic entities in the dispatch framework and are executed
by the dispatch framework providing all the functionality necessary for an
office suite. Save for example is a command that stores a modified document
using the same name it was opened with. Commands are accessible through
the menu or the button bar. The execution of a command might trigger an
event (see Section like OnPrint. Using UNO external programs can ex-
ecute commands and for example print a document without the involvement
of the user but adding the above mentioned disclaimer “Printed by”.

2.2.3 Events

UNO-Events [2] consist either of a pair of events describing the start of a
command (e.g. OnLoad) and the end of a command (e.g. OnLoadDone) or
they consist of one event describing either the beginning (e.g. OnPrint) or
the end (e.g. OnNew) of a command. It is possible to receive these events
through a subscription mechanism.

3 INFORMATION FLOW

As an intermediate step towards the enforcement of usage control policies in
OO we define an information flow model for OO. The information low model
allows us to identify the actions that generate an information flow in and out
of O0. As a next step towards the enforcement of usage control policies, the
behaviour of these actions is to be controlled. Furthermore, these actions are
the low-level actions which are the target of a mapping from high-level policy
actions to low-level actions. For instance, a “do not edit” action is mapped
onto inhibiting “copy”, “paste” and “cut” commands and their shortcuts.

3.1 OO Information Flow Model

We define the fundamental entities that make up the information flow model
[9]. The level of abstraction chosen has been motivated by our considera-
tion of keeping the model simple on one hand but powerful enough on the
other to allow for an appropriate design and implementation of enforcement
mechanisms. Thus, the chosen abstraction of a data item D to be controlled
is a document as policies are defined for documents as a whole, and thus

modelling the content of the document down to the level of characters, para-
graphs, graphics etc. would have been too detailed. Further, taking the
current implementation of OO into account, the entity dealing with a docu-
ment is the OO process itself, however a document opened by OO is worked
on by an editor instance. Several editor instances form the set of princi-
pals P. Data containers C' are files which are referenced by a file name (=
identifier). A data container holds zero or more data items; i.e. documents
that are stored in ordinary files, backup files or in memory. Given an ed-
itor instance, certain actions like Save trigger an information flow between
data containers (from memory into the original file). The relevant actions,
i.e. where information is flowing between containers, we consider are: Open,
Save, Save as, New, Close, Copy, Cut, Paste, Export, Insert and Delete.

The information flow model is defined over the above entities. We define
states to consist of two elements: a storage function that maps containers
to sets of data items and that is of type C' — 2P; and a naming function
that maps principals and identifiers to containers and that is hence of type
P x F' — C where F is the set of identifiers (i.e. file names). Intuitively,
storage functions capture which data is stored in which containers. The
intuition behind the naming function is that a principal has certain container
accessed using a specific name. States are accordingly defined as ¥ = (C —
2D)x (P x F — (). Transitions between two states are effected by principals
that perform actions: ¥ x P x A — .

The initial state of the system is given by the allocation of documents in
containers and the OO instance running but no editor instance.

The idea of the information flow model is to provide one particular kind
of semantics for a system, namely the information flow in-between differ-
ent containers. Monitoring this information flow is a prerequisite for the
implementation of enforcement mechanisms. In the following section we con-
centrate on the first aspect, i.e. information flow monitoring.

3.2 OO Information Flow Monitor

The above OO information flow model is represented in Figure [T} It
shows an OO instance and the containers the OO instance is using. Note the
special containers for Insert and Delete content as well as Export and the
Clipboard. The memory container is implicit with the editor instances.

According to the model, an information low monitor can be implemented
and monitor all the information flow that crosses the stroked line. This

monitor would do a bookkeeping of when and where information has flown.

The stroked line also indicates
where enforcement mechanisms have
to be in place to enforce usage con-
trol policies. Thus the flow moni-
tor is an integral part of the enforce-
ment architecture.

4 ENFORCEMENT ARCHI-
TECTURE Figure 1: OO Information Flow Model

Using the above described UNO an OO controller was designed that enforces
usage control policies using different enforcement mechanisms. Here an en-
forcement mechanism is a piece of software that checks if the execution of a
specific command is allowed or not according to some policy and then can
allow or forbid, sometimes modify the execution of this command. The con-
troller is an external Java program that connects to an OO instance and can
control OO completely.

The controller consists of four parts which all have different functional-
ity. The mode manager (MM) (Section [4.3) manages the different modes
the controller software can be in: normal or in enforcement mode depending
on the current document. Additionally it has the responsibility to store the
configuration of the enforcement mechanisms per document (Figure[2). The
policy decision point (PDP) (Section is the component which decides
if a mode change is necessary and triggers the transition into the respective
new mode. The policy enforcement point (PEP) (Section receives the
information about which enforcement mechanisms have to be used from the
PDP (via the mode manager) and configures the enforcement mechanisms
accordingly. The policy manager (Section is responsible for reading in
an XML configuration file. The file specifies the enforcement mechanisms
and their parameters thus representing the usage control policy for the doc-
ument(s) currently loaded. Using the information from the XML file the
policy manager supplies the MM (via the PDP) with the correct configura-
tion information. A more detailed explanation follows.

PDP/PEP/MM
Created OnNew, OnLoad

Deleted OnUnload User ‘@44 »0’“6\) &Qzé UNO
/ N commands > events

=

New ————>| <
oS

save/Saveas < 00 Instance

H ¥
51 poc. b3 Policy |

N e PDP: Policy Decision Point
Used to configure PEP PEP: Policy Enforcement Point
‘on OnFocus, OnNew and OnLoad MM: Mode Manager
Figure 2: MM configuration Figure 3: OO and PDP interaction

4.1 PDP

The PDP interacts with the OO instance as shown in Figure 3] The OO
instance receives user commands and generates UNO events as discussed in
Section 2.2l The PDP listens for UNO events (for more details on UNO
events see [2]) and intercepts their execution as further detailed below. The
most important events we are interested in are OnNew, OnLoad, OnUn-
load and OnFocus. If the OnNew event is received the default enforcement
mechanisms have to be applied. If the event OnUnload is received the mode
manager needs to be triggered that the configuration for the closed docu-
ment can be deleted from the list of possible modes (Section [4.3). OnFocus
indicates that the user is looking at another document thus a different set
of enforcement mechanisms might be applicable. At the OnLoad event an
existing document is newly loaded into OO thus the current mode has to be
changed and a new one has to be created using the configuration information
for this newly loaded document.

As the PDP is only considering the events mentioned before there is a
static configuration of the enforcement mechanisms for a specific document
at its first access. So there is no dynamic policy update implemented at
the moment which means that once the document is loaded no change in
the number of enforcement mechanisms for this document is taking place.
Furthermore the inhibitors are always active when a document has the fo-
cus. Thus, a user can not issue a forbidden command because all forbidden
commands are disabled from the menu.

The decision if an action is allowed or not is partly delegated to the
enforcement mechanisms. For example the Save as modifier is deciding if the
storage path for a document is correct or not and if not correct modifies it.
An extension to the PDP, but not implemented yet, is a state machine which

decides if an action is allowed or not depending on the current state and
past behaviour. For example, a policy might exist that allows a document
to be printed only three times. The PDP would then decide that after the
document has been printed three times it must not be printed anymore.

4.2 PEP

The PEP gets the configuration information of the mechanisms from the
PDP respective mode manager and configures the individual mechanisms
which are described in more detail in the following (Figure [4)).

OnNew OnNew
OnLoad OnLoad

OnFocus

OnFocu: (@ @) OnFocus

OnFocus

Dispatch|
provider]|

EM: Enfocement Mode
NM: Normal Mode

Figure 4: PEP configuration Figure 5: MM enforcement modes

Additionally the PEP sets the current enforcement mode whenever a doc-
ument is newly loaded or focus changes; then the PEP acts as follows: First
the inhibitor is used to disable the forbidden commands and if no command
is forbidden all commands are enabled again.

Next existing modifiers are removed not to interfere with the new enforce-
ment mode. After the removal it is checked if there are modifiers for this mode
and which type of modifier (at the moment PrintModifier or SaveAsModifier
can be selected) needs to be enabled. The name of the modifier is stored in a
list. New modifiers are instantiated according to configuration information.

4.2.1 Inhibitor

The inhibitor can block any command that OO can execute. It is for exam-
ple possible to forbid a user printing a specific document by disabling the
shortcut Ctrl-P to start the print job and the Print menu entry.

On a technical level it is implemented like follows. The inhibitor gets
from the PEP a list of forbidden commands. These commands are inserted
into a configuration list provided by OOE] (Figure . This list defines the

!This configuration list is to be found in /org.openoffice.Office. Commands/Execute/
Disabled.

commands currently disabled. After the insertion of the commands into the
list the configuration of OO is refreshed and the inserted commands are not
available anymore neither via the menu or the button bar nor via shortcuts.
Modifying this list and refreshing the configuration of OO is done every time
there is a switch to another document. So inhibiting commands is done
depending on the document.

4.2.2 Modifiers

The modifier is a DispatchProvider (Figure [4)) which intercepts a command
before it gets executed and modifies some parameters for this command. In
OO every command has a so called DispatchProvider which implements the
effect of the command. A newly written DispatchProvider can be executed
before or instead of the original version. It can manipulate the parame-
ters of a requested command or the content passed on to this command and
then pass on the modified command and/or content to the original Dispatch-
Provider where the command is finally executed. The new DispatchProvider
can also perform some actions which are not executed in the original Dis-
patchProvider and thus modify the result of the command execution.

Every document has its own list of DispatchProviders as for example a
spreadsheet document needs other providers than a text document. Thus it
is necessary to get the correct reference (frame) for the document so that the
modifier can be inserted in the right list of DispatchProviders.

Modifiers have to be implemented using an abstract modifier class which
requests that every modifier needs to implement the configureModifier(...)
and removeModifier () methods. With the first method the modifier gets all
necessary parameters for the configuration and the second method restores
the original DispatchProvider. Furthermore queryDispatch(...) has to be
re-implemented so that the correct (new) DispatchProvider is chosen, with
all (new) functionality being implemented in the dispatch(...) method.

4.2.3 Execution of Action & Finite Delay

The execution of actions and the finite delay is not implemented yet but
similar to the modifier there may exist several different executors and delayers
and thus a generic version of both can not be implemented. For this reason
an abstract executor class and an abstract delayer class are defined which
need to be implemented. Each of the classes has two methods. One method
for the configuration and the other one for the removal of the classes.

4.3 Mode Manager

The mode manager is responsible for managing the enforcement modes the
controller software can be in (Figure . Basically two modes exist. The
normal mode (NM) where no enforcement mechanism is active and an en-
forcement mode (EM). The enforcement mode is described by the enforce-
ment mechanisms and their configuration active for one particular document.
It exists in several variants where each variant is associated with one open
document and might have different enforcement mechanism configurations
associated with it. Thus the current active mode depends on the current
document and describes the enforcement mechanisms to be applied

The mode manager passes the necessary configuration information of the
enforcement mechanisms for the current document to the PEP whenever a
mode change happens (Figure [5)).

Technically two classes for the mode manager exist. One class holds all
mode information including docURL (a string representation of the document
name containing the URL where the document is stored) for the document
and if modifiers, inhibitors, delayers or executors are existing (inclusive con-
figuration information for those) for this mode. The other class manages
the list of modes that are currently needed as there is one mode per opened
document and depending on the document the mode is changed. Thus if a
document is loaded a mode for this document is created and if a document
is unloaded the corresponding mode is deleted.

4.4 Policy Manager

The policy manager consists of two parts. The translator class configures a
new mode by inserting the configuration information from the XML config-
uration file into the mode to be newly created.

The second part is reading the configuration information from the XML
configuration file and finally passing it on to the translator class. The config-
uration file specifies which modifiers, inhibitors, delayers and executors are
applicable for this document

5 REMARKS

As mentioned above there are some limitations to the enforcement of usage
control policies in OO using UNO. There is no support of some kind of access
control on UNO APIs. Thus every extension or external program can revert

the modifications done by the controller using the same API. Furthermore
only the functions provided by OO can be controlled so it is for example
possible to prevent sending a document by e-mail using the menu entry but
if the menu entry is enabled it can not be controlled to whom the document
is send as the e-mail program is external. Here a coordination with the e-mail
program would be necessary to enforce the policy for the document.

The clipboard is a special case which can not be controlled completely by
the OO controller software as the clipboard itself is an external component
but nevertheless an integral part of OO. The controller software can not
prevent a user from copying something into the clipboard so it needs the help
of the clipboard itself to control the flow of information to the clipboard. So
the clipboard should have a controller software, too, that can communicate
with the OO controller. Whenever something is copied from OO to the
clipboard the clipboard controller can ask for the policy of the document
the content is coming from. The OO controller knows which document has
currently the focus and from which content can be copied into the clipboard.
Thus the OO controller can forward the appropriate policy to the clipboard
controller. The clipboard controller can then allow or not allow the pasting
of the clipboard content.

Summarizing it is necessary to have also controllers in the other parts
of the system like for example in the clipboard, the e-mail program or the
operating system. Only with all the other controllers that work together it
is possible to completely enforce a usage control policy.

6 SUMMARY

The paper showed how enforcement mechanisms for usage control can be im-
plemented, based on an information flow model, using the UNO of OpenOf-
fice.org. It was explained how the controller software for OpenOffice.org is
working which enforces usage control policies. For this means a XML con-
figuration file is read in that describes the configuration of the enforcement
mechanisms for a document subject to a usage control policy. The informa-
tion in the configuration file is used to build an internal representation of the
mode OO has to be in for this document. Depending on which document
has the focus the appropriate enforcement mechanisms, as specified in the
configuration file, are applied.

Additionally it was shown that not all possible usage control policies
can be enforced as the controller is for an application with a limited set of

functionalities. Some other restrictions to this approach were shown as there
is for example no access control on the APIs UNO is providing.

References

1]
2]

3]
[4]

[10]

[11]

Microsoft rights management services. http://www.microsoft.com/rms.

OpenOffice.org Developer’s Guide. http://doc.services.openoffice.org
/wiki/Documentation/DevGuide/OpenOffice.org_Developers_Guide.

OpenOffice.org, April 2009. http://www.openoffice.org.

M. Hilty, A. Pretschner, C. Schaefer, and T. Walter. Enforcement for
Usage Control: A System Model and a Policy Language for Distributed
Usage Control. Technical Report I-ST-20, DOCOMO Euro-Labs, De-
cember 2006.

J. Ligatti, L. Bauer, and D. Walker. Edit Automata: Enforcement
Mechanisms for Run-time Security Policies. International Journal of
Information Security, 4(1-2):2-16, February 2005.

S. Media. Sealed Media Enterprise DRM - How it works. Sealed Media,
July 2006. http://www.sealedmedia.com/products/how_sm_works.htm.

OASIS. OASIS Open Document Format for Office Ap-
plications (OpenDocument), July 2008. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=office.

J. Park and R. Sandhu. The UCON ABC Usage Control Model. ACM
Transactions on Informations and Systems Security, 7:128-174, 2004.

A. Pretschner, M. Biichler, M. Harvan, C. Schaefer, and T. Walter.
Usage Control Policy Enforcement without and with Information Flow.
Technical Report T5010131, DOCOMO Euro-Labs, February 2009.

A. Pretschner, M. Hilty, and D. Basin. Distributed Usage Control.
CACM, 49(9):39-44, September 2006.

A. Pretschner, M. Hilty, F. Schiitz, C. Schaefer, and T. Walter. Usage
Control Enforcement - Present and Future. IEEE Security € Privacy,
6:44-53, July/August 2008.

	Introduction
	Related Work
	Usage Control Enforcement
	OpenOffice.org and UNO
	Dispatch Framework
	Commands
	Events

	Information Flow
	OO Information Flow Model
	OO Information Flow Monitor

	Enforcement Architecture
	PDP
	PEP
	Inhibitor
	Modifiers
	Execution of Action & Finite Delay

	Mode Manager
	Policy Manager

	Remarks
	Summary

