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Abstract—Intrusion detection relies on the ability to obtain
reliable and trustworthy measurements, while adversaries will
inevitably target such monitoring and security systems to prevent
their detection. This has led to a number of proposals for using
coprocessors as protected monitoring instances. However, such
coprocessors suffer from two problems, namely the ability to
perform measurements without relying on the host system and
the speed at which such measurements can be performed.
The availability of smart, high-performance subsystems in com-
modity computer systems such as graphics processing units
(GPU) strongly motivates an investigation into novel ways of
achieving the twin objectives of self-protected observation and
monitoring systems and sufficient measurement frequency. This,
however, gives rise to performance penalties imposed by memory
synchronization particularly in non-uniform memory architec-
tures (NUMA) even for the case of direct memory access (DMA)
transfers.
Based on prior work detailing a cost model for synchronization
of memory access in such advanced architectures, we report an
experimental validation of the cost model using an IEEE 1394
DMA bus mastering environment, which provides full access to
the measurement target’s main memory and involves multiple
bus bridges and concomitant synchronization mechanisms. We
observed up to 25% performance degradation, highlighting the
need for efficient sampling strategies for both, memory size and a
preference for quiescent data structures for monitoring executed
by off-host devices.

Index Terms—Host intrusion detection, asynchronous memory
access, coprocessor, DMA, IEEE1394, NUMA

I. INTRODUCTION

Despite the fact that the use of coprocessors for host
intrusion detection has been proposed years ago ([1], [2])

they are currently not used in this domain. Even though their
practical applicability has been shown by [3]1, commercial
host ID software is still being installed on the host and
executed by its CPUs.
In contrast to this, coprocessors are applied in the context of
network ID ([4], [5]). The ease of accessing data from network
traffic in contrast to data on a host system (i.e. the host’s
main memory) and putting it under the audit of an auxiliary
processor has contributed its part to this development.
The use of graphics chipsets or PCI processing devices ([6])
and GPUs in general ([7]) for host intrusion detection has been
mentioned in previous work. While [6] mostly deal with self-
protection of the observing component itself, [7] introduce a
model capable of expressing the costs such observations can
cause. That is, the authors pay special attention to concurrent
memory accesses, particularly in a NUMA architecture as
represented by a standard multi-core (and especially multi-
processor) system. The actual feasibility of a GPU in order
to perform host intrusion detection was the subject of [8].
Although the model proposed in [7] and utilised here is
intended mainly for high-speed interconnections such as these
offered by GPU and similar components, it is applicable
to all non-uniform concurrent memory access architectures.
The read-only (observation) access to a state variable of a
target process can cross several cascading memory hierarchy
layers with the ultimate shared resource in such architectures
generally being main memory. As snooping and cache coher-

1This included a proof of concept implementation called CoPilot.
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ence protocols allow the efficient but forced synchronisation
without the possibility of intervention on the part of software
components, this provides a mechanism for concurrent state
observations that cannot be corrupted or compromised. While
[7] is concerned about observations executed by the GPU, sim-
ilar effects with regard to resource contention and ultimately
performance degradation on the host system can be caused
by every memory access using DMA. Having in mind the
limitations revealed by [8] we thus propose another hardware
based approach in this paper: That is, we exploited the ability
of the IEEE 1394 technology in order to gain full access to the
main memory of a connected computer. In order to make the
observation effects as clear as possible, a workload generator
produced alterations in a data structure of a pre-defined size.
As we measured the CPU cycles consumed by our generator
in both cases – with and without observation – we were able
to quantify the loss of performance caused by observations
executed by a processor other than the CPU of the host system.
The results obtained are of prime importance for the design of
smart host intrusion detection algorithms running on off-host
components. They provide central information with regard to
the correlation of factors such as observation frequency, size of
the data structure to be observed and the resulting performance
degradation.
The remainder of this paper is structured as follows: In Section
II we give an overview of the IEEE 1394 serial bus interface
and point out the reasons for its applicability in our context.
We also provide a historical insight into the main contributions
regarding the field of physical attacks using the IEEE 1394
technology. We then present a description of our experimental
setup that was used to obtain our results in Section III followed
by a presentation of the actual results in Section IV. The paper
is closed with a conclusion in section V and a brief description
of our future work in Section VI.

II. IEEE 1394

The IEEE 1394 interface, better known as FireWire, was
initially developed by Apple Computer, Inc. in the 1980’s
[9]. Standardized by the Institute of Electrical and Electronics
Engineers (IEEE) for the first time in 1995 (IEEE 1394-
1995) [10], the latest changes have been published in October
2008 [11]. Due to its high speed and low overhead, today
the FireWire technology is mainly used for fast file transfer
between external periphery such as mass data storages (e.g.
hard drives, secure digital (SD) memory cards, etc.) and a
computer. But in contrast to the universal serial bus (USB),
the FireWire standard allows for the communication between
devices itself. Areas of application are here the communication
between a digital camera and a printer, for instance.
In January 2000, version 1.1 of the open host controller
interface (OHCI) specification was released by contributors
from seven well known computer companies, headed by Apple
Computer, Inc. [12]. This interface is an implementation of
the link layer protocol of the 1394 serial bus and empowers a
broader variety of devices to take advantages of the IEEE 1394
interface. Furthermore, it is the OHCI that has features such

as memory-mapping implemented in hardware which allows
for a communication between two FireWire devices without
the interaction of the operating system (OS) of either of them.
Chapter 12 of the OHCI specification defines: “When a block
or quadlet read request or a block or quadlet write request
is received, the 1394 Open HCI chip handles the operation
automatically without involving software if the offset address
in the request packet header meets a specific set of criteria...”
[12]. For us, the relevant criterion to meet is the one that
specifies that the address has to fall within the physical range
of the target memory space. This range is defined by lower
and upper bounds. While the offset is at address 48’h0 the
address of the upper bound is either at 48’h000_FFFF_FFFF

or stored in the field physUpperBoundOffset2. This of course
implies a security risk not only in theory but in practice as
well, as we will see now.

A. Physical Attacks and Observations Using IEEE 1394
The properties of the IEEE 1394 technology noted above

are also attractive in the security context for both, attacks
and forensic purposes. Although not within the scope of the
present paper, we note that this use has e.g. been documented
informally during the MacHack 17 (2002) convention, where a
proof-of-concept for overwriting screen memory between two
Apple Macintosh computers was demonstrated [13]. This was
further elaborated by Dornseif et al. in 2004 using an Apple
iPod for reading and writing to arbitrary memory locations in
host systems without interacting with the target host operating
system [14].
As expected and demonstrated by Boileau ([15]), this is fully
independent of any host operating system, although the device
class must be known to the host system. This can, however,
be easily emulated by setting the appropriate status registers
to a known device and class, e.g. a mass storage device. Since
all tools necessary for such an attack are freely available,
having physical access to an enabled FireWire port on a
computer is equal to having full access to its main memory.
This includes use cases like changing the password protection
code stored in main memory of a screen-locked computer in
such a way that it accepts just any input. The intended lack
of any access control mechanism or authentication schema
between the communicating devices makes this possible.
For the purposes of attacks, performance considerations are
largely irrelevant. However, forensic applications will aim to
maximize speed. Particularly for the case of forensic memory
capture, the fact that IEEE 1394 devices are typically coupled
to main memory by one or more bus bridges makes this
susceptible to chip-set modifications as e.g. proposed and
demonstrated by Rutkowska [16].
We note that the transitioning over multiple bus bridges is
also affecting the measurements observed in the present paper
as this implies not only matching different memory, bus, and
device speeds, but also the use of multiple cache coherence
and synchronization protocols.

2In order to stay within the range, the value stored here needs to be
decremented by one.
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III. EXPERIMENTAL SETUP

In this section we give a description of the experimental
setup that was used in order to measure the impact, host
memory observations executed from an off-host component
can have on the system being observed. The results will be pre-
sented in detail in Section IV. The full project, containing the
source code of our workload generator as well as all results, is
available at http://sourceforge.net/projects/dmamemoryobserv.

We used two computers: one being the observer and the
other one being the target. Each of them provided a S400
FireWire interface.
Observer: Ubuntu Linux 10.04 64-bit, kernel version 2.6.32,
4GB RAM, Intel Core 2 Quad (Q8200, 2.33GHz).
The establishment of the FireWire connection between the two
computers, as well as the access to the main memory and
the data transfer, is accomplished by the open source tools
published by Boileau [17]. The underlying modules raw1394,
IEEE1394, sbp2 (serial bus protocol 2) and OHCI1394 are
mandatory and usually distributed as part of the kernel but
can also be downloaded from the corresponding repository
if not. For the observation of a certain amount of data at
specific locations, we wrote a wrapper around Adam Boileau’s
readWithExclusion() function which takes the corresponding
addresses pointing to the data as an argument.
Target: ARCH Linux 64-bit (a simple and lightweight Linux
distribution), kernel version 2.6.33, 2GB RAM, Intel Core 2
Duo (E8400, 3.0GHz).
In our setup, the target’s only duty is to run a workload
generator and to log the CPU cycles that were consumed while
executing it. The workload generator is a C++ console program
producing a synthetic workload by continuously writing to
a data structure of a pre-defined size. The idea behind this
program corresponds to the basic statement of [7]: A forced
synchronization between different memory levels (i.e. a cache
and the main memory) takes place, whenever two conditions
are met: (1) The higher level holds an altered copy [m]′ of the
original but outdated data [m] which resides in the physical
memory. (2) [m] is accessed by another (co)processor. In this
case, synchronization must take place in order to serve the
accessing (co)processor with the latest data.
The basic pseudo code of our workload generator is shown in
Listing 1. The parameters of the main() function are:

• blockSize: The size (in bytes) of the data structure the
workload generator works with.

• runs: The number of executions of the workload() func-
tion.

• iterations: The number of times the data structure is
written during each execution of the workload() function.

• ratio: The ratio (i.e. 1 ≥ ratio > 0) expressing the
percentage of the data structure that is actually being
written.

• type: A string, being written to the log file, indicating
whether the test ran under observation (o) or normal
duty (nd).

As mentioned in previous work, we propose the observation of
relations among critical components of the operating system
and its security components. Therefore, we deal with rather
small data structures compared to intrusion detection systems
which use a signature-based approach. One example here is the
observation of entries in the system-call-table, which serves
as an interface between user and kernel mode. By altering the
function pointers of certain kernel functions or by falsifying
their return values, an adversary can successfully conceal the
presence of malicious software. As the function names, as well
as the function numbers and pointers are rather small, we have
decided to run our experiments with a data structure between
8 and 64 bytes.
The number of computations (i.e. the execution of line 18 in
Listing 1) can be adjusted by the parameters runs, iterations
and blockSize. By incrementing the number of runs by the
same value the number of iterations gets decremented (i.e.
runs += y; iterations -= y), the number of computations
would stay same. But it is important to understand the two
major side effects this would have: Experiments showed that
(5 · 109) · blockSize results in a reasonable runtime for the
workload generator when the size of the data structure lies
between 8 and 64 bytes. That is, the runtime is high enough
to obtain meaningful results even when working with small
data structures (i.e. 8 bytes) and low enough to allow for an
execution of all tests withing one day when working with
bigger ones (i.e. 64 bytes). By setting parameter runs to
5 · 109 and thus, omitting the first for loop in the workload()

function, we would produce a log file containing 5 · 109
entries; too much data to work with. The second effect is,
that by omitting this for loop, the time between the two
cycle measurements would be very short and therefore, less
meaningful.
The parameter ratio relates to the equation for calculating
the interference ratio for a given amount of data presented
in previous work ( (1) in this paper). According to [7], the
performance loss due to observation depends not only on the
amount of data being observed but also on its composition.
That is, read-only data cannot be written, therefore, does not
need to be synchronized and thus, will not cause resource
contention.

I =


min, for r = 1 ∨ x = 0,

max, for x = 1,

undef, for x = 1 ∧ w = 0,
w·x
1−r · [t], for r < 1 ∧ 0 < x < 1

(1)

In (1), r stands for the ratio of read-only and w for the ratio
of writable data (r + w = 1). x expresses how much of the
processing timespan [t] is actually used for writing data.
The special cases lead to a minimal (I = 0) and maximal
(I = 1) interference rate respectively, while the case of
spending all time (x = 1) on writing data when there is no
writable data available (w = 0) is undefined.
It is clear to see that the interference ratio I becomes smaller
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by decreasing the amount of writable data (w) being written
(x). And in our setup, this can be done by defining a stress ratio
between 0 and 1 which is expressed by the parameter ratio,
determining the percentage of the workload that is actually
being written.
Before every individual test, we log its characteristic, e.g.,
whether or not the target process ran under normal duty (nd)
or was under observation (o). This information is passed by
the parameter type.

Listing 1. Pseudo Code of the Workload Generator.
1 main ( b l o c k S i z e , runs , i t e r a t i o n s , r a t i o , t y p e )
2 {
3 l o g . w r i t e ( p r i n t I n f o ( ) ) ;
4 m = m al lo c ( b l o c k S i z e ) ;
5 f o r ( i < r u n s )
6 {
7 s t a r t C y c l e s = r d t s c ( ) ;
8 workload (m, i t e r a t i o n s , r a t i o ) ;
9 endCyc le s = r d t s c ( ) ;

10 l o g . w r i t e ( endCyc le s − s t a r t C y c l e s ) ;
11 }
12 }
13

14 void workload (m, i t e r a t i o n s , r a t i o )
15 {
16 f o r ( i < i t e r a t i o n s )
17 f o r ( j < m. s i z e ( ) ∗ r a t i o )
18 m[ j ] = m[ j +1] + 1 ;
19 }

In order to get reliable results regarding the execution time of
each run, we made use of Intel’s Read Time-Stamp Counter
instruction rdtsc [18]. This assembler command is available
since the first Pentium model range and returns the value of a
64-bit model specific register that is incremented every CPU
cycle [19]. Furthermore, we disabled the multi-core support
and the Intel SpeedStep feature to make sure that our program
is carried out by one core only and to keep the maximum CPU
clock rate static.

The full experiment included three different cases, charac-
terized by different parameters. Each case U1−3 comprised
four test tuples T1−4 and each test tuple consisted of two tests
t1−2. The parameters for each case are given by the signature
of the main() function in Listing 1: While the parameters runs
(10,000) and iterations (0.5mio) stayed the same for all tests
making the results comparable, blockSize (8, 16, 32, 64), ratio
(0.5, 1.0) and type (o, nd) were adjusted in compliance to the
following conditions:
For all cases U1−3:

• The test tuples within the same case are executed with
a different blockSize: T1 = 8, T2 = 16, T3 = 32 and
T4 = 64

• The tests within the same test tuple are executed with
a different type but derive the blockSize from the corre-
sponding test tuple. Therefore, they are executed with the
same blockSize but with a different type.

• Only one instance of the workload generator executing
the tests is running on the target, except for U2: here, two

instances of the workload generator are started, executing
the exact same tests in parallel.

• The stress ratio for all tests is 1.0 except for the tests
within U3: here, it is set to 0.5.

The lower bound of the parameter blockSize was set to 8, in
order to assure a reasonable runtime in conjunction with the
agreed on values for the parameters runs and iterations. All
subsequent values are multiples of 8, allowing for an easy
comparison of the overall results.
As can be seen, all three cases consist of four experiments
each where each experiment is conducted with and without
concurrent observation. With respect to the conditions above,
in the first case we had only one instance of the workload
generator running on the target. For the second case we started
two instances in parallel and observed both at the same time.
In either one of them all bytes allocated were actually written
(ratio = 1.0). In case three, we again used one instance only
but the stress ratio was set to 0.5. In this case only 50% of the
allocated data were altered. Once a case was initialized (i.e.
all tests were configured and ready for execution), we dumped
the full main memory of the target and searched through it,
looking for the addresses pointing to our workload. According
to the blockSize assigned, we then started the observation of
the corresponding amount of data whenever parameter type =
o.

IV. RESULTS

Based on the case conditions introduced in Section III,
we obtained meaningful results which allow for a direct
performance comparison with regard to the CPU cycle con-
sumption of a given process with and without observation. By
continuously observing only the actual synthetic workload (i.e.
only that amount of data – defined by the parameter blockSize–
that is actual being worked with) we forced an immediate
synchronization between the caches and the main memory and
therefore caused a resource contention.
Our results can be seen as a benchmark. As with any other
benchmark, it is of prime importance that the results being
compared with each other originate from identical experi-
mental setups. Furthermore, the development of CPUs with
intrinsic power saving features such as lowering the clock
rate or turning off (parts of) certain caches attributes to the
fact that reproducing the exact results will most likely be
impossible, even if the experiments are carried out by an
identical hardware setup. That is, in contrast to, for instance,
the Intel SpeedStep feature, which can be seen as a “global”
property, future developments will be more fine grained (i.e.
instead of a per-socket-feature, a per-core or per-ALU feature
will be in place), not allowing for any adjustment from the
outside. As a result of this, the number of outliers will increase
causing a higher standard deviation.
Our results show several clear and generalizable trends and
distinctive technical features, expressed by six characteristic
values for each test:
• Process runtime: This is the time, measured in minutes,

executing an individual test took.
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• Measurements: During each observation, we measured
the number of measurements per minute.

• Mean Value: As mentioned before, each test returned
10,000 measurements of the consumed CPU cycles. In
order to make a statement regarding the average con-
sumption, we calculated the mean value.

• Standard Deviation: The standard deviation gives an
idea about the level of heterogeneity of all 10,000 mea-
surements per test.

• Outliers: A high standard deviation can be an indicator
for both, a very heterogeneous sample space and a
reasonable number of outliers. A closer look into the
distribution of our measurements revealed the existence
of outliers.

• Performance Degradation: The most interesting state-
ment is the one regarding the difference between the
CPU cycles consumed by the workload generator with
and without observation. This performance degradation
is expressed in percentages.

Before we present the three generalizable trends according to
the characteristic values from above, we want to describe the
results of one sample case, namely the one where we observed
one process only with a stress ratio of 1.0. Thus, the results of
all other cases are of a similar character, the in detail presented
example shows the effects of observations carried out by a
coprocessor very clear.

A. Sample Results:
Observing One Process with a Stress Ratio of 1.0

As mentioned before, one case consisted of eight tests,
where each two tests of one tuple are characterized by working
on a data structure of the same size but are of a different type.
Table I shows the conditioned results obtained from all tests
within case one (one process instance, ratio = 1.0).

TABLE I
ALL CONDITIONED RESULTS OBTAINED FROM OBSERVING ONE PROCESS

WITH A STRESS RATIO OF 1.0.

Runtime
in min

Measm.
min Size

Perf.
Degr.

Mean
Value Outlier Std.

Div.

3.07 0 8 0.77% 54.99mio 180 36.24%
3.08 130,768 55.41mio 183 36.26%

4.97 0 16 1.28% 88.90mio 294 28.48%
5.02 69,887 90.04mio 298 28.30%

8.15 0 32 1.48% 146.04mio 480 21.94%
8.25 34,076 148.20mio 491 21.84%

15.57 0 64 16.39% 279.41mio 928 15.63%
18.12 16,881 325.19mio 1,085 14.34%

Column one (runtime in minutes) represents the runtime of
each test. The figures in the second column (measurements per
minute) stand for the frequency with which the observation of
the data structure – characterized by the size shown in column
three (size) – was executed. The zeros in the second column
indicate that this test ran without observation (parameter type
= nd). Column four (performance degradation) depicts the

percentage values of the difference between two tests of the
same test tuple, based on the averaged CPU cycles shown in
column five (mean value). The number of outliers, stated in
column six, will be discussed shortly. They are closely related
to the standard deviation shown in column seven.
The high standard deviations shown in the last column of
Table I is due to the fact that our data is distinguished by
a number of very clear outliers. Using the results that lead
to the values shown in the first row of Table I, we created
a histogram that clearly reveals the outliers. Figure 1 sharply
uncovers that 98.19% of all values lie within the range of
53mio - 54mio CPU cycles. Further investigation showed that
the outliers appear almost periodically which strengthens our
suspicion that these exceptionally high values are caused by
processes belonging to the operating systems running on the
target, demanding for processor time. Table II depicts the

Fig. 1. Histogram of all results from the first test (corresponding to row one
in Table I).

normalized results of the first test. That is, we eliminated all
outliers in order to show that the actual result set is quite
homogeneous. The still notably higher standard deviation of
the normalized results for the last test tuple is due to a higher
degree of heterogeneity in the corresponding result set, which
increases with the amount of data being processed by the
observer. According to the characteristic values in Table I
and II, we derived three generalizable trends described in the
following subsections.

TABLE II
NORMALIZED CONDITIONED RESULTS FOR OBSERVING ONE PROCESS

WITH A STRESS RATIO OF 1.0.

Performance
Degradation

Mean
Value

Standard
Deviation

0.72% 52.29mio 0.04%
52.67mio 0.10%

1.27% 84.50mio 0.02%
85.57mio 0.02%

1.44% 138.85mio 0.02%
140.85mio 0.18%

16.36% 265.45mio 1.47%
308.94mio 1.26%
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B. Observing Frequency vs. Size of the Data Structure

As mentioned earlier, the size of the data structure we
observed was set to either 8, 16, 32 or 64 bytes by the
parameter blockSize. While the amount of data being subject
to observation rises, the frequency with which the data can
be observed decreases almost proportionally: While we were
able to observe 8 bytes with an average frequency of 195,201
measurements per minute, twice the amount of data (16 bytes)
could only be observed with roughly half of the frequency
(105,126 measurements per minute). This behavior is depicted
in Figure 2.

Fig. 2. Measurement Frequency for Different Data Structure Sizes.

The explanation for this effect is rather straightforward:
Observing data from a coprocessor implies the task of copying
the concerned data from the host towards a memory closer to
the coprocessor. Transferring small chunks of data is just faster
than transferring bigger ones. And as we have only one DMA
channel between our target and the observer, a new observation
can only start after the previous one has finished.
For interpreting Figure 2 correctly, it is important to know
that the lines connecting the measuring points have just been
added in order to emphasize the trend and to facilitate the
readability. The impression that the frequency degradation is
almost linear is deceitful.

C. Performance Degradation

Even though the details of Figure 3 may mislead to a slightly
different conclusion, the averages calculated from all values
(depicted by the solid gray line) clearly show: The larger the
data structure we observe, the bigger the resource contention
on the host being subject to observation. The percentaged
values shown in Figure 3 are the averages calculated from
the performance degradation with and without outliers. The
message this figure sends out is clear: Observations have
a significant performance impact on the host. While the
measurements for the case of observing one or two processes
with a stress ratio of 1.0 (i.e. the workload generator works on
100% of the initialized data) confirm this message, the curve
describing the case of observing one process with a stress
ratio of 0.5 seems to contradict it. That is, while executing
the tests with a data structure of 64 bytes and a stress ratio
of 0.5, the performance impact decreased drastically. This

Fig. 3. Performance Degradation according to the Size of the Observed Data
Structure.

effect is most likely the result of system based algorithms
dealing with the assembling of cache lines, working sets, etc.
by using techniques such as pre-fetching. Since our way of
measuring the performance impact is an end-to-end approach,
the explanation of such effects is out of scope. We leave aside
the exact diagnosis of intrinsic impacts caused by protocol
overheads or diverse bridges and controllers our signal passes
as well as the performance boost a process can experience
when the executing processor benefits from a good locality of
reference within the data it demands. Therefore, we measure
what is important in practice: the degree of performance
degradation including all side effects.
The downside of this approach is, that we can only speculate
regarding the causes of certain effects. Special equipment as
used by chip vendors would have been necessary in order to
further investigate on these effects. The important remark here:
The results stay the same, even if one would be in the position
of giving a detailed description on the internal behavior.

D. Increasing Number of Outliers

In Section IV-A we already presented a closer look into the
outlier effect and used the results of our first test (row one in
Table I) to show that besides the easy identifiable outliers, our
result set is heterogeneous. Figure 4 now depicts the growth
of the number of outliers with regard to the size of the data
structure the workload generator works with.

Fig. 4. Increasing Number of Outliers.
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Three major characteristics are important to point out: The
first one is that our observation causes the number of outliers
to increase. While for the cases where we observed smaller
data structures the difference was marginal, the gap rose when
we increased them. Interesting to know here is the fact that
the number of outliers has only a very small influence on
the performance degradation3 as one can see by comparing
the corresponding values shown in Tables I and II. The
second important point regards to the growth of the absolute
appearances of outliers. That is, the more data we work with,
the more outliers appear. And last but not least, one can see
that working with only half the data initialized caused roughly
half the amount of outliers. Even though the outliers are clearly
to identify in all cases and thus can be eliminated for statistical
purposes, they are an intrinsic element of the workload process
running on the target. The avoidance of such effects may be
desirable but due to several reasons (e.g. multi-tasking on one
processor) not always possible.

V. CONCLUSION

We have shown that memory observation as may arise in
concurrent observation for intrusion detection and prevention,
implies a non-negligible cost – particularly when executed
over a shared memory or non-uniform memory architecture.
Validating a model for such NUMA architectures, this paper
has shown that data structure size and the fraction of write
activities is clearly having effects that cannot be fully masked
by even advanced processor and memory architectures.
Memory observations executed by a coprocessor imply costs
(i.e. performance degradation) on the side of the host being
observed. And in this work we were able to quantify these
costs for a given hardware. [7] explain that the reasons
for this loss of performance can be found in the memory
architecture of today’s computers: Data most recently used
by a processor is copied to a memory level which is much
smaller than the systems main memory but also much faster.
The probability that data used at time t0 is needed at time t1
makes this approach very efficient. Whenever the copied data
gets altered, a synchronization between the different memory
levels involved (i.e. in most architectures L1-cache, L2-cache
and main memory) does not take place immediately. Instead
a coherence protocol is implemented, triggering the synchro-
nization according to a set of rules. One of these rules is,
that a synchronization must take place when another processor
is about to access data residing in the main memory that is
marked as dirty. That means that there exists an altered copy
of this data in a higher memory level. In order to fulfill the
requirement of serving every processor with the most current
data, synchronization is indispensable. And since the accessing
speed of the different memory levels differ potentially by one
or more orders of magnitude, each synchronization results
in a loss of performance. A cost model for expressing the
worst case with regard to the performance degradation such

3Because of this, we were able to average the values for the performance
degradation shown in Figure 3.

synchronizations can cause has been presented in previous
work. Its practical and quantitative validation was missing until
now.
The results obtained from our experiments fully validate the
theoretical statements proposed previously. We implemented a
workload generator and executed it on a lightweight Linux op-
eration system (i.e. ARCH Linux) in order to see the effects as
clearly as possible. The actual observation was realized using a
high-speed bus-mastering DMA channel established between
a second computer and the target system. This corresponds
to the prerequisite of [7] to have the observation executed
by another processor than the one operating the host system
(i.e. a coprocessor). By running tests for three different cases
(eight tests per case) where each test was distinguished by
the parameters with which it has been executed, we clearly
unveiled the performance impact. With the cases executed
in our test environment (see Section III), we experienced a
performance degradation of more than 25% for the case where
we observed two instances of our workload generator running
in parallel and working on a data structure of 64 bytes each.
The size of the data structure being observed is not the prime
factor leading to a well-founded assumption of whether or
not the loss of performance is expected to be rather high or
low. That is, the composition of the data structure plays a
vital role: As already mentioned, synchronizations take place,
when altered cached data needs to be written back to the main
memory. If the cached data is either read-only or writable
but not being written, its value will never change and thus,
synchronization is not needed. Together with this statement,
an equation capable of calculating the inference rate was
published (see (1)), basically saying that the observation of
read-only data is cheap in comparison to the observation of
writable data, that is actually being written. By setting the
stress ratio for one case to 0.5, we achieved that the workload
generator worked on only 50% of the data initialized.
It can clearly be seen that the results validate the equation
presented in previous work, as – compared to the cases
with a stress ratio of 1.0 – the performance impact on the
target was significantly lower as shown in Table III. Here,
we juxtaposed the percentaged performance degradations for
the case of observing one instance of the workload generator
working on 50%, respectively 100% of its workload. Just as in

TABLE III
COMPARISON OF PERFORMANCE DEGRADATIONS DEPENDING ON THE

AMOUNT OF DATA ACTUALLY BEING WRITTEN.

Performance Degradation

ratio = 0.5 ratio = 1.0

0.30% 0.75%

0.23% 1.27%

1.25% 1.46%

0.21% 16.37%

Figure 3 the percentages shown in Table III are the averages
obtained from calculating the performance degradation with
and without inclusion of outliers. It is clearly to see that the
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performance degradation is much lower when not 100% of the
data being observed is altered (tested with 50% and 100% in
our case).
We have shown that memory observation executed by a
coprocessor does not come for free. In fact, depending on the
size and composition of the data structures being subject to
observation, the performance degradation varies: Bigger data
structures and a higher appearance of data being written, result
in a more serious loss of performance.
With regard to future work, the results represented in this paper
are essential. They prove that an observation strategy accord-
ing to the busy-wait approach would result in a tremendous
loss of performance and is therefore not desirable. This is
especially true when we consider that the results presented in
this work were obtained using the comparatively slow S400
FireWire technology (400Mbit/s), whose interface is bound to
the input/output controller hub (southbridge) while the host’s
main memory is connected to the memory controller hub
(northbridge). This resulted in a signal latency and caused the
maximum measurement frequency to be rather low. The maxi-
mum measurement frequency that could have been achieved by
using a highly parallel and multi-threaded multi-core GPU –
connected to the northbridge – would have been much higher.
Thus, causing an even bigger performance degradation when
following the busy-wait approach is likely.

VI. FUTURE WORK

The results reported in the present work were obtained
from a single observer and target tuple. In order to rule out
anomalies arising from this particular configuration, ongoing
experiments are being conducted with further platforms.
In our experimental setup we took advantage of the FireWire
S400 technology which served as an easy to use approach to
observe the data structures on the target. This was done with a
maximum of 195,201 measurements per minute. Besides the
bandwidth limitation as such (400Mbit/s), the fact that our
signal had to pass two south- and northbridges (target and ob-
server) accounts for the relatively low observation frequency.
In our future work, we will overcome the limitations revealed
by [8] and use the GPU (up to 16GB/s) for our purposes.
By doing so, the measurement frequency will benefit from a
higher bandwidth due to the fact that this internal coprocessor
is directly connected to the same integrated memory controller
the main memory is coupled with.
By designing smart algorithms which are capable of exploiting
the parallel design of modern graphics cards, we will propose
an observation model that takes advantage of the maximum
available observation frequency if necessary but usually tries to
work as efficient as possible. That is, keeping the frequency as
low as possible while still guarantying a reasonable probability
that subversion is detected while taking place.
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