
Traffic Flow Management in Next Generation
Service Provider Networks - Are We There Yet?

Ryan Goss
Institute for ICT Advancement & School of ICT

Nelson Mandela Metropolitan University
Port Elizabeth, South Africa

Email: ryan@goss.co.za

Reinhardt Botha
Institute for ICT Advancement & School of ICT

Nelson Mandela Metropolitan University
Port Elizabeth, South Africa

Email: reinhardta.botha@nmmu.ac.za

Abstract—For years a number of savvy Internet users have
avoided firewalls and traffic engineering measures by directing
traffic through ports seemingly unrelated to the application.
These ports are those often marked by firewall administra-
tors as “safe” or those given a higher priority on quality of
service systems. This problem has been effectively managed
by implementing deep packet inspection techniques, giving the
administrators a view into the underlying layer 7 protocol of each
flow. The reliance on transit payload to be in plain text format
in order to reliably match the underlying content has put this
method of classification at a major disadvantage.

The use of encryption by users to render the contents of a
data packet opaque is, therefore, of major concern to network
administrators who rely heavily on deep packet inspection.
Without the ability to interrogate the underlying payload of
traffic flows, a new method to identify this type of traffic needs
to be discovered in order to retain control of the network. As an
increasing number of users turn to IP tunneling to secure their
data transfers, network service providers need to ensure their
systems are ready to handle this type of traffic. A failure to do
so would result in them facing the reality of a badly managed
network.

This paper highlights the challenges faced by network service
providers in opaque traffic classification for both existing and
future, next generation networks. It investigates and evaluates
the various solutions implemented in order to manage network
traffic “in the dark”.

I. INTRODUCTION

The Internet has, since its inception as a public access
communications facility, become the universal communica-
tions infrastructure in business [1]. The classification and
identification of network applications is therefore an important
requirement for network administrators, allowing them to de-
tect and mitigate security threats, protecting the network from
unwanted applications [2], [3], [4]. Although the requirement
for traffic management is in place, an accurate method for
reliably identifying applications associated with network traffic
is still to be developed [2]. The original design for the TCP/IP
protocol was based on trust, where communications would not
be seen as a threat [1]. With new means of communication
constantly emerging, some of which constituting resource
misuse, the development of such management methodologies
has become increasingly urgent [5]. The following section
provides a background of various mechanisms which have
been employed over the years in an attempt to classify various

applications.

II. NETWORK TRAFFIC CLASSIFICATION

On a network, a flow or session is defined as the com-
munication between two hosts on the network, described by
a quintuple comprising of a source and destination address,
protocol, source and destination ports [1], [6]. Internet Protocol
(IP) packets sharing the same quintuple information generally
belong to a single session [1]. Multiple sessions can therefore
be identified by determining unique quintuples of IP packets
on the network at any given time. The first packet seen, the
synchronize or SYN packet, determines the beginning of the
flow whilst the termination of a flow could be due to either a
time-out or protocol based termination mechanism [6]. Traffic
within a particular flow can be viewed in two directions,
namely from source to destination or from destination to
source [6]. The Transport Control Protocol (TCP) requires that
for every transmitted packet, a return acknowledgement (ACK)
packet be sent. These ACK packets do not carry any payload
and are simply used to confirm the successful reception of the
last set of packets.

A. Early Classification Techniques

The first classification systems made use of protocol and
port information to classify traffic using known ports [2], [7].
The fact that port and protocol information is determined
entirely by end hosts allows them to easily be changed by
the user to disguise or conceal traffic [4]. For this reason,
standard port and protocol matching technologies, although
fast and efficient, became increasingly inaccurate [2].

Devious applications began developing their own applica-
tion level protocols, operating at layer 7 of the OSI model.
These protocols gave them the ability to use dynamic port
selection mechanisms to communicate, providing a mechanism
for the violation of network policies, allowing previously pro-
hibited applications to traverse firewalls and enter the network
[4]. The evasion of firewalls and Quality of Service (QoS)
classifiers became a major concern for network administrators,
who needed a way to interrogate the layer 7 protocol of such
flows.

The answer to this problem was realized with the introduc-
tion of Deep Packet Inspection (DPI) technologies, a mecha-



nism for interrogating the underlying layer 7 information of
traffic flows.

B. Deep Packet Inspection

Inspecting the payload of every packet in the network is a
traditional approach to classifying network traffic, instituted
by a number of network administrators [3]. Deep packet
inspection techniques, when applied to plain-text flows, can
be very accurate and provide network administrators a view
into dubious traffic on the network [2], [3], [7].

DPI has become an essential tool for network security
engineers, enabling them to search both packet header and
payload (content) for predefined protocol signatures [8]. These
signatures can be created to match legitimate, permissible
applications as well as potentially malicious attacks on the
network. In order for a network to be managed effectively,
both types of traffic, good and bad, need to be identified.

The art of matching patterns within strings can be expanded
using regular expressions, which allows for more flexible
string searching and allows access control policies (ACP)
the ability to match on mutable content [7]. Two of the
most famous string matching algorithms include the Aho-
Corsasick and Commetz-Walter algorithm [8]. These and other
classification algorithms have limitations, both in what traffic
can be classified and challenges in their implementation.

III. CHALLENGES IN FLOW CLASSIFICATION

As in the case of classic port/protocol matching becoming
obsolete, so too is the wide spread use of DPI as an alterna-
tive to network flow classification. DPI may be successfully
implemented in enterprise or small to medium sized service
provider networks, however, these algorithms were proposed
as suitable for line speeds not exceeding 100Mbit/s. This speed
is sub-standard for both current and future medium to large
network service providers.

The speed limitation is but one drawback of DPI systems.
Another to consider is the privacy regulations associated with
user data in transit [9]. Many users, if made aware of the
use of DPI, may raise concerns with the examination of the
data within their network flows [2]. Service providers and
enterprise networks need to protect the confidentiality of data
transmitted across their networks. If sensitive information is
in any way intercepted, the trust between end-users and the
service provider will be broken.

A further consideration to take into account is the high com-
putational and storage overhead associated with DPI [2]. This
overhead increases exponentially when interrogating every
packet traversing the network; a problem compounded as de-
velopments toward higher-speed network links continues. The
development of new applications contributes to the problem as
the number of signatures required to match various protocols
proportionately increase. The storage of these signatures will
increase over time, putting an increased load on the memory
requirements of the classification systems [8]. As network
speeds increase, the bottleneck of DPI becomes apparent as
the Deterministic Finite Automation (DFA) algorithm, used

by many DPI systems, starts to strain [8]. This strain results
in increased queuing on the router interfaces, increasing the
network latency experienced by the user and degrading the
overall performance of the network connection. DPI systems
will therefore be faced with high-performance challenges as
link rates and traffic volumes on service provider networks
continues to increase [8]. To illustrate this point, consider the
string matching algorithm used in the Snort Network Intrusion
Detection System (NIDS) [10]. The algorithm accounts for up
to 70% of execution time and 80% of instruction cycles of the
application [8].

Recent application development has introduced one final,
potentially devastating challenge to DPI systems. In an effort
to avoid DPI systems matching their protocols, applications
are using encryption to secure their underlying payload [2].

A. Managing Opaque Network Traffic

By encrypting or otherwise altering the state of the payload
of any data packets, the contents thereof become opaque and
are thus unmanageable by DPI systems. Application protocols
are therefore difficult to detect if the underlying protocol is
encrypted [5].

Applications such as Secure Shell (SSH), Secure Socket
Layer (SSL) and various Virtual Private Network (VPN)
technologies make use of encryption to secure the data packet
whilst in transit. These opaque network flows are of great con-
cern for network administrators attempting to manage traffic
flows on their network. Unfortunately for these administrators,
an increasing number of applications on the Internet are
moving toward encryption technologies, making it difficult to
accurately match the their traffic [4], [6].

The problem of identifying encrypted network traffic is
not limited to DPI systems. The identification of encrypted
network traffic by any means has been the subject of many
research projects of late in the field of network flow classifi-
cation [1], [3], [6], [9]. In each case, the opacity of data in
transit presents as possibly the most challenging obstacle to
overcome when managing traffic flows.

Trojan horse or virus programs, along with other malicious
applications, have been known to encrypt their traffic in an at-
tempt to deter any payload detection signatures from matching
their communications [4]. Other applications, including popu-
lar P2P file sharing protocols, have altered their protocols to
support bi-directional encryption to avoid detection. Bittorrent,
arguably one of the most popular P2P file sharing platforms
today [11], is one such application which offers users the
option to encrypt communications between peers. Encryption
scrambles the payload of the packet, preventing string matches
from taking place using predefined signatures. Encryption
therefore renders DPI systems ineffective in matching strings
within the payload.

Applications themselves need not provide encryption facili-
ties natively in order to encrypt their data in transit. In order for
any IP enabled application to render their payload opaque to
DPI systems, the user need only direct the traffic flow through
a Virtual Private Network (VPN) or IP tunnel.



B. Tunneling to Increase Privacy of Data Flow Payloads

Although the wide-spread, global reach of the Internet
provides communication facilities unrivaled by others, se-
curing communications across such a public medium has
become very important to end-users and enterprises alike. One
solution many are turning to is the use of Virtual Private
Networks (VPN). A VPN is a private, secure network running
over public network infrastructure, such as the Internet [1].
A VPN establishes a logical tunnel, secured using various
cryptographic mechanisms [1]. Tunneling is the encapsulation
of one network protocol within another, with the former the
payload of the latter, illustrated in Figure 1.

SERVICE PROVIDER

NETWORK

IP TUNNEL

USER 1 USER 2

Fig. 1. IP Tunnel

The tunnel, from the perspective of end-users and their
applications, is transparent. They are often, therefore, unaware
they are being directed through a tunnel [1]. Tunnels are
designed to mimic implementation features of physical media,
thus permitting multiple protocols and traffic flows the ability
to operate within a single instance, at the same time. Whereas
in the past a specific flow could be managed based on
the information read from its content for each quintuple, a
single quintuple could potentially host a number of flows
simultaneously. This fact makes it very difficult for service
provider’s classifiers to manage, especially when encryption
is present, skewing the payload.

Packet payload encryption occurs when one or more pro-
tocols are encapsulated within the tunneling protocol, such
as in the case of a secure shell (SSH) tunnel [5]. SSH, as an
example, not only supports remote terminals, but also supports
secure remote copy (SCP) and tunneling of TCP/IP traffic.
The ability for protocols such as SSH to exhibit multiple
behavioural patterns makes them increasingly difficult to man-
age. [4]. There are many implementations of IP tunneling
available today, including IP Security (IPSec), Microsoft’s
Point to Point Tunneling Protocol (PPTP), Cisco’s Layer 2

Tunneling Protocol (L2TP) and the afore mentioned tunneling
via SSH.

Encrypted tunnels form one of the most complicated traffic
engineering mechanisms for service providers to manage. For
this reason, the following section discusses this topic in more
detail, highlighting various attempts which have been made
to mitigate the problem and enable a view for administrators
into the traffic profiles within such tunnels. This paper uses the
SSH protocol as an example tunneling mechanism to illustrate
certain facts about encrypted IP tunnels and the effectiveness
achieved in managing their opaque traffic flows.

IV. MANAGING OPAQUE NETWORK TRAFFIC FLOWS

SSH is typically used as a remote shell access mechanism
to Unix/Linux based systems [2], [12]. The SSH protocol also
supports a number of other functions, including the transfer
of files using the Secure Copy protocol (SCP), forwarding
arbitrary TCP ports over a secure channel between 2 hosts
and tunneling. Traffic running on the SSH protocol is
encrypted, rendering payload analysis based classification
techniques ineffective in the identification of underlying
flows [2]. Although the SSH protocol is encrypted, the
initial SSH handshake between client and server is served in
plain text, making it possible to correctly identify an SSH
communication using DPI techniques [6]. A simple telnet
session to an SSH server illustrates this point:

telnet host.domain.com 22
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is ’ˆ]’.
SSH-2.0-OpenSSH_4.3p2 Debian-9

The SSH request for comment (RFC) dictates any communi-
cations past this point need to be encrypted in order to avoid
a ”Protocol mismatch” error being returned and the session
being closed [12]. From the initial handshake received, it is
trivial to determine the SSH protocol version (2.0), server
application (OpenSSH daemon), version information (4.3p2)
and the host operating system (Debian Linux). A deep packet
inspection classifier could therefore match the SSH protocol by
using a simple regular expression signature, illustrated below.

# SSH - Secure SHell
# Pattern attributes: great veryfast fast
# Protocol groups: remote_access secure ietf_draft_standard
# Wiki: http://www.protocolinfo.org/wiki/SSH
# Copyright (C) 2008 Matthew Strait, Ethan Sommer; See ../LICENSE
#
# usually runs on port 22
#
# http://www.ietf.org/internet-drafts/draft-ietf-secsh-transport-22.txt
#
# This pattern has been tested and is believed to work well.

ssh
ˆssh-[12]\.[0-9]

The SSH protocol states that immediately after the hand-
shake process, the encryption keys for the session are ex-
changed between the client and server [12]. At this point
and further, all communications between client and server
are encrypted and thus all future payload, including tunneled
flows, opaque.

In the case of applications being routed through SSH
and other encrypted tunnels, the only remaining discernible



characteristics of the flow is its direction, approximate size
and timing between packets [5]. Using this information, it
is possible to construct a behavioural profile or signature
for various protocols [5]. The signature, consisting of meta
information relating to the direction, approximate size and
timing of packets within the flow, can be used to match
characteristics of certain flows as they traverse the network. A
characteristic, or feature, is a descriptive statistic that can be
calculated from one or more packets of a flow [6].

As many applications move toward encryption, the ability to
identify network flows ”in the dark” would be of tremendous
practical value to network administrators [4]. Whilst much
early research in traffic classification did not take encrypted
traffic into account, a number of recent research papers focus
primarily on that topic [3]. This research often resulted in the
ability to classify flows into broad categories such as ”peer to
peer”, ”bulk data transfer” or ”interactive” and did not provide
a turn key solution to in-depth flow classification [4]. The
use of Machine learning was investigated by researchers in an
effort to have the machines themselves understand the traffic
they were switching and thus attempt to abstract various flows
from opaque.

A. Protocol Idenfication using Machine Learning and Statis-
tical Analysis

The use of machine learning techniques was researched
in an attempt to classify encrypted traffic, based on certain
characteristics unique to each protocol flow [6]. The extracted
features from each flow form the input vectors for these
machine learning algorithms [6]. These features needed to
be characteristics which survived the encryption process [4],
thus features such as IP addresses, source and destination
ports and layer 4 protocols are excluded from the input
vector; removing the dependency on such features [5], [6]. Of
the machine learning algorithms observed during a literature
survey conducted by the authors, the most prominent were
found to be AdaBoost, RIPPER, C4.5, Rough Set with Genetic
Algorithms and Hidden Markov models.

In order for a machine learning algorithm to be effective
in classifying flows on service provider networks, it should
have the ability to deal with a large degree of noise and
skewed data, typical of real Internet traffic [4]. Adaboost,
short for Adaptive Boosting, is one meta-algorithm used in
machine learning [13]. The algorithm creates new classifiers
by examining previous misclassifications performed by ex-
isting classifiers and adapting to such mistakes. These new
classifiers are developed by combining the performance of
potentially hundreds of existing, more simple classifiers using
a voting scheme [2]. One crucial problem with AdaBoost, like
many machine learning algorithms, is its inability to handle
noisy datasets [2], a requirement for any successful traffic flow
classification algorithm.

RIPPER, or Repeated Incremental Pruning to Produce Error
Reduction algorithm, is another machine learning algorithm
[2]. Unlike Adaboost, the RIPPER algorithm has the ability
to manage noisy, real-world Internet traffic schemes with a

fair degree of accuracy. The RIPPER algorithm was found to
manage noisy datasets with a lower computational overhead
and higher accuracy than Adaboost and other algorithms, such
as C4.5 [14].

There are a number of statistical based algorithms used
in machine learning systems. C4.5, often referred to as a
statistical classifier, is a machine learning algorithm which
generates a decision tree used for classification. This decision
tree employs a “divide-and-conquer” strategy for attribute
based model building [6]. These models become classifiers
in flow detection systems. Other examples of statistical al-
gorithms include Hidden Markov models, which are used to
build statistical models for the sequence of packets produced
by each protocol of interest [4]. These models are then used
to categorize future TCP connections observed on the network
with a fair degree of accuracy.

Another machine learning algorithm used for flow classifi-
cation is rough set theory. Rough set theory is a branch of set
theory, a major area of research in mathematics [6]. The rough
set attributes are reduced using genetic algorithms (GA). These
GAs have a fitness function, which calculate a score for each
attribute and thus optimize the classifier. Genetic Algorithms
are believed to be able to reduce complexity in large decision
systems, all the while lowering the computational overhead to
do so [6]. More information on the algorithm is available in
[15].

The accuracy of machine learning algorithms is compli-
cated by the ability for certain protocols to exhibit multiple
behavioural patterns. Protocols, such as SSH, are able to per-
form real-time, interactive communications as well as secure
bulk data transfer operations [4]. Sometimes certain protocols
exhibit similar characteristics, such as in the case of the simple
mail transfer protocol (SMTP) and file transfer protocol (FTP),
which behave the same way in many regards [4].

There are a number of other algorithms which have been
considered by researchers in the quest to find the perfect clas-
sification system for network traffic flows. One commonality
exhibited by all of them is their dependency on the extraction
of certain characteristics from each flow, encrypted or plain
text. Each algorithm requires these attributes to describe
and therefore classify the flows. It is therefore important to
correctly determine which attributes should be used as input
vectors for the various algorithms.

B. Flow Characteristics Influence Detection Accuracy

Each flow, or quintuple, has a specific signature for each
of the two directions of traffic flow [6]. Table I depicts the
attributes used by [6] as valid input vectors for machine
learning algorithms. The inputs used by various machine
learning algorithms may be different as there is no hard and
fast rule as to which are the best ones and which are not.
The input choices made for the machine learning algorithm
may very well depict the accuracy the algorithm in the traffic
identification process. Although the use of machine learning
techniques to identify encrypted traffic have proven effective,
much of the research has shown that it is easier to apply



Protocol
Bytes in forward direction
Packets in forward direction
Bytes in backward direction
Packets in backward direction
Min backward inter-arrival time
Min forward inter-arrival time
Std Deviation of backward inter-arrival times
Std Deviation of forward inter-arrival time
Mean backward inter-arrival time
Mean forward inter-arrival time
Max backward inter-arrival time
Max forward inter-arrival time
Min backward packet length
Min forward packet length
Max backward packet length
Max forward packet length
Std deviation of backward packet length
Std deviation of forward packet
Mean forward packet length
Mean backward packet length
Duration of flow

TABLE I
LIST OF FLOW BASED FEATURES

such techniques to well known application traffic, including
web browsing and email. More work is required in order
to successfully classify unknown, encrypted applications [6].
Furthermore, the problem of encrypted protocol detection
becomes compounded when the encrypted payload consists
of multiple application protocols, running in parallel across
a single tunnel [3]. Tunneling allows multiple flows to si-
multaneously operate at any time, interweaving the protocols
within the tunnel [5]. This interweaving of simultaneously
communicating protocols makes it extremely difficult for sys-
tem classifiers to differentiate between sessions, thus providing
a potentially lower hit ratio for the classification algorithm
[5]. The interweaving of protocols within an opaque flow
is a consideration to take into account when selecting the
characteristics to be used as input vectors for machine learning.

As IP networks continue to grow, the once seemingly limit-
less resource, IPv4 address space, has become strained, forcing
service providers to seek alternative addressing schemes. The
use of a new numbering scheme for large networks may result
in a complete overhall of existing thoughts with regard to flow
based characteristic selection as they bring new packet header
fields and flow information. One numbering protocol designed
to accommodate the future growth of large networks, gaining
widespread popularity, is Internet Protocol version 6.

V. INTERNET PROTOCOL VERSION 6 - SAVIOUR AND
COCONSPIRITOR

The Internet Assigned Numbers Authority (IANA) is re-
sponsible for assigning the public Internet Protocol (IP) ad-
dress space space to registered parties across the globe. In
order to accomplish this mammoth task, the geographic areas
have been broken down and specific delegations controlled by
the Regional Internet Registry (RIR) to whom the requester
belongs. IANA assigns additional IP allocations to the five

Registry Geographic Region Unallocated %
AFRINIC Africa 57.7%
APNIC Asia Pacific 2.2%
ARIN America 7.9%
LACNIC Latin America and Caribbean 29.3%
RIPE Europe, Middle East and Parts of Asia 9.5%

TABLE II
RIR UNALLOCATED SPACE

RIRs as their available resources begin to deplete. This process
has worked well over the years, however in recent times, the
once seemingly limitless resource of IPv4 address space at
IANA has been exhausted.

The exhaustion of public Internet address space has long
been predicted by specialists. With the final five /8 delega-
tions (each consisting of 16,777,214 addresses) being made
by IANA to each of the Regional Internet Registries (RIR)
in February 2011, it is now more important than ever to
consider addressing alternatives. One such alternative gaining
momentum in many service provider and enterprise networks
is IP version 6 (IPv6).

IPv6 is the latest version of the Internet protocol numbering
system, designed to accommodate vastly more devices than
its predecessor, IPv4. Although the implementation process of
IPv6 across service provider networks has been slow, many
are now being forced to implement the protocol due to the
exhaustion of IPv4 address space.

The latest unallocated address space reported by Potaroo at
the time of writing is shown in Table II [16].

Based on existing allocation or “burn” rates, the existing un-
allocated IPv4 address space is predicted to run out sometime
within the next 2 to 3 years [16]. For certain RIRs, including
AFRINIC and LACNIC, this IPv4 exhaustion may not occur
for some time after that. Requesters in these regions may
therefore have the facility to acquire new IPv4 address space
for a longer period than those in other regions. For others,
such as APNIC, this may come sooner than expected.

On 15th April 2011, APNIC announced that they are in
the process of delegating IPv4 space from their final /8
block [17]. APNIC have thus begun advocating the immediate
implementation of IPv6 support for operators within their
region.

As regions under the control of rapidly depleting RIRs start
to turn on IPv6, it becomes necessary for other regions to
follow suite. IPv6 and IPv4 networks cannot communicate
natively, thus the drive toward IPv6 implementation will be
global, rather than isolated to particular regions. Those who
do not participate in the IPv6 deployment process run the risk
of becoming an isolated ”island” on the Internet, unreachable
by those who have.

IPv6 promises to bring, in addition to increased numbering
facilities, new developments and applications to the Internet
[18]. This, in turn, means more classifiers will be required to
accurately control such traffic.

In order to provision IPv6 to an end-user, both the provider



edge and core of the service provider network need the
ability to switch IPv6 traffic. The lack of IPv6 implementation
by many service providers have forced end-users to seek
alternatives for their IP requirements. One solution is the
tunneling of IPv6 over an existing IPv4 network. This speeds
up the deployment process and makes significantly more
public address space available to users immediately. The use
of IPv6 in IPv4 tunnels is on the rise, troubling news for
network administrators already battling to manage tunneled
traffic. Hurricane Electric, the largest IPv6 network, boasts
more than 61,886 IPv6 tunneled connections in over 179
countries [19]. The number of tunnels hosted by Hurricane
Electric is on the rise, more so now that IPv4 address space
is becoming less available.

VI. CONCLUSION

Networks have, over the years, evolved from their once
simple design, where an application could be identified by
identifying the ports the communication was undertaken on.
Port and protocol matching was overcome by applications who
developed their own layer 7 based protocols, enabling them
to communicate on dynamic, random ports and protocols.
This provided them with a mechanism to avoid firewalls
and QoS devices which would otherwise potentially restrict
them. Classification systems adapted by looking deeper into
the data packet’s payload, accomplished by applying regular
expressions to match strings of data in the early stages of layer
7 protocol initialization.

Layer 7 DPI was countered by applications who incorpo-
rated various levels of encryption in their protocol, making
the underlying payload opaque to DPI techniques. Encryption
can be seen as a two-edged sword; firstly, it creates a secure
medium to transfer sensitive information across a public
network infrastructure, reassuring the end-user of information
confidentiality whilst in transit. This will become more com-
mon as network user become more security savvy [4]. On the
other hand, the inability to view such traffic may lead to a
network service provider incorrectly marking the traffic and
negate their ability to correctly manage such traffic.

Much research was performed to detect applications using
encryption, by building a set of characteristics based on
behavioural analysis of each protocol. This system was used in
conjunction with machine learning algorithms, which proved
effective until faced with multiple flows running across an
encrypted tunnel on a single quintuple. The dissemination of
each flow from an encrypted tunnel stream proved difficult
and accuracies varied. This problem was further compounded
by the fact that some protocols exhibit the same behaviour as
others, such as the case between file transfer protocol (FTP)
and simple mail transfer protocol (SMTP). Other problems
relate to one protocol being able to perform multiple functions,
such as SSH remote shell and secure copy processes. Of all
the research considered by the authors, no sure fire way of
accurately detecting applications within tunnels was discov-
ered. This translates to a reduction in management capabilities

for network administrators faced with users who tunnel their
applications across the network.

With the increase in popularity of the new IPv6 protocol,
due to the exhaustion of IPv4 resources from RIRs, an increas-
ing number of users will start creating tunnels to route new
IPv6 address space over IPv4 infrastructure. Unless network
service providers can get a handle on the identification of
flows within such tunnels, the management of next generation
service provider networks appears dismal at best.

REFERENCES

[1] Y. Zhang, Z. Li, S. Mei, and C. Fu, “Session-based tunnel scheduling
model in multi-link aggregate IPSec VPN,” in Third International
Conference on Multimedia and Ubiquitous Engineering, 2009.

[2] R. Alshammari and A. N. Zincir-Heywood, “A flow based approach
for ssh traffic detection,” in Proceedings of the IEEE International
Conference on System, Man and Cybernetics. The IEEE Computer
Society, 2007, pp. 296–301.

[3] R. Alshammari and A. Zincir-Heywood, “Investigating two different ap-
proaches for encrypted traffic classification,” in Sixth Annual Conference
on Privacy, Security and Trust. The IEEE Computer Society, 2008, pp.
156 – 166.

[4] C. V. Wright, F. Monrose, and G. M. Masson, “On inferring application
protocol behaviors in encrypted network traffic,” Journal of Machine
Learning Research, vol. 7, pp. 2745–2769, 2006.

[5] M. Gebski, A. Penev, and R. K. Wong, “Protocol identification of
encrypted network traffic,” in Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence. IEEE Computer Society,
2006, pp. 957–960.

[6] R. Alshammari, A. N. Zincir-Heywood, and A. A. Farrag, “Performance
comparison of four rule sets: An example for encrypted traffic classifica-
tion,” in World Congress on Privacy, Security, Trust and the Management
of e-Business. The IEEE Computer Society, 2009, pp. 21–28.

[7] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation
of a content-scanning module for an internet firewall,” in 11th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines,
2003, pp. 31–38.

[8] K. Huang and D. Zhang, “A byte-filtered string matching algorithm for
fast deep packet inspection,” in The 9th International Conference for
Young Computer Scientists. The IEEE Computer Society, 2008, pp.
2073 – 2078.

[9] P. Dorfinger, “Real-time detection of encrypted traffic based on entropy
estimation,” Master’s thesis, Salzburg University of Applied Sciences,
August 2010.

[10] “SNORT open source IDS/IPS.” [Online]. Available:
http://www.snort.org/

[11] K. K. Nam, “Analysis of bittorrent protocol and its effect on various
networks,” Simon Fraser University, Tech. Rep., 2011.

[12] “The secure shell (SSH) transport layer protocol - RFC 4253.” [Online].
Available: http://www.ietf.org/rfc/rfc4253.txt

[13] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” Lecture Notes in Computer
Science, vol. 904/1995, pp. 23–37, 1995.

[14] W. W. Cohen, “Fast effective rule induction,” in In Proceedings of
the Twelfth International Conference on Machine Learning. Morgan
Kaufmann, 1995, pp. 115–123.

[15] J. Wroblewski, “Finding minimal reducts using genetic algorithms,” in
Second Annual Join Conference on Information Sciences. Warsaw
University of Technology, 1995, pp. 186–189.

[16] “Projected RIR unallocated address pool exhaustion,” 2011. [Online].
Available: http://www.potaroo.net/tools/ipv4/

[17] APNIC, “APNIC IPv4 address pool reaches final /8.” [Online].
Available: http://www.apnic.net/publications/news/2011/final-8

[18] J. Tian and Z. Li, “The next generation internet protocol and its test,” in
The IEEE International Conference on Communications, vol. 1. The
IEEE Computer Society, 2001, pp. 210 – 215.

[19] H. Electric, “Tunnelbroker service,” 2011. [Online]. Available:
http://www.tunnelbroker.net/usage/tunnels by country.php


