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Abstract—Recent research has shown that it is possible to
identify malicious URLs through lexical analysis of their URL
structures alone. This paper intends to explore the effectiveness
of these lightweight classification algorithms when working with
large real world datasets including lists of malicious URLs
obtained from Phishtank as well as largely filtered benign URLs
obtained from proxy traffic logs. Lightweight algorithms are
defined as methods by which URLs are analysed that do not use
external sources of information such as WHOIS lookups, blacklist
lookups and content analysis. These parameters include URL
length, number of delimiters as well as the number of traversals
through the directory structure and are used throughout much
of the research in the paradigm of lightweight classification.
Methods which include external sources of information are often
called fully featured classifications and have been shown to
be only slightly more effective than a purely lexical analysis
when considering both false-positives and false-negatives. This
distinction allows these algorithms to be run client side without
the introduction of additional latency, but still providing a high
level of accuracy through the use of modern techniques in
training classifiers. Analysis of this type will also be useful in an
incident response analysis where large numbers of URLs need
to be filtered for potentially malicious URLs as an initial step
in information gathering as well as end user implementations
such as browser extensions which could help protect the user
from following potentially malicious links. Both AROW and CW
classifier update methods will be used as prototype implementa-
tions and their effectiveness will be compared to fully featured
analysis results. These methods are interesting because they are
able to train on any labelled data, including instances in which
their prediction is correct, allowing them to build a confidence
in specific lexical features. This makes it possible for them to be
trained using noisy input data, making them ideal for real world
applications such as link filtering and information gathering.

I. INTRODUCTION

In recent trends the motivation behind malicious websites
has moved towards financial gain [1]. This is primarily done
through the use of phishing and spam sites that attempt to
sell fake goods such as pharmaceuticals or through the use of
”drive-by-downloads”, causing the user to unknowingly install
malicious applications [2]. The main outcomes of malicious
content can be broadly grouped into the following three
categories:
• Phishing
• Fraudelent advertising
• Computer infection for unauthorized use

A. Phishing

Phishing is an attack whereby an attacker tries to obtain
user’s personal information by trying to trick the user into
entering identifying and account information for a legitimate
service. This method predominantly targets financial and pay-
ment service sectors as indicated by [3]. Phishing attacks
focusing on the financial and payment service sectors account
for about 71% of the phishing attacks during that time, as
indicated by the statistics.

B. Fraudulent advertising

This method of attack tries to prompt users to buy coun-
terfeit goods at low cost. The main vector for this attack is
through email spam advertising which will often show a price
list as well as a URL to the web page where the goods may
be purchased.

C. Computer infection for unauthorized use

Botnets are primarily propagated in a manner whereby a
user installs software which exploits their machine. This can
be done via many attack vectors, including that of drive-by-
downloads. These are executed when a user follows a link to
a web page which then exploits the user’s browser, installing
the software in the background without the user’s knowledge
or permission.

II. STRUCTURE

The Obfuscation section of this paper describes the methods
whereby the owners of malicious websites try to obfuscate
the URLs with the intention of making them more difficult
to detect and the different types of obfuscation employed.
The next section entitled Counter Measures describes methods
employed by the security industry to try to detect these
malicious URLs and attempt to warn the user as to their
content (or even forcibly stop the user from visiting them).
The two broad categories discussed are blacklisting and lexical
analysis of the URL itself. The section titled Lightweight
Classification Algorithms is a discussion around three modern
algorithms designed to train perceptrons (using lexical anal-
ysis) to identify malicious URLs without the use of external
data sources while remaining highly accurate. The algorithms
discussed are the Online Perceptron, Confidence Weighted and



Adaptive Regularization of Weights methods. The applications
of these lightweight classification applications are discussed in
the section Applications, as well as the work already achieved
in our research and work currently underway. The final section
Conclusion summarises the topics covered in this paper.

III. OBFUSCATION

One of the challenges faced when identifying malicious
URLs is that they are often obfuscated using a variety of
methods. Doshi et al. [4] list the following four types of
obfuscation which are intended to hide the malicious nature
of the web site.

• Type I - This type of obfuscation refers to cases where
the hostname is replaced with an IP address and in
some cases where a port number is used. This can
be particularly effective when the site that is being
impersonated is somewhere in the URL path and the IP
address is represented as hexadecimal value [4].

• Type II - The hostname in the URL has a domain name
that appears to be legitimate but usually contains a
redirect to another host [4].

• Type III - Again, the host name is obfuscated, but in this
form a large string of other valid domains is appended
to it. This gives the appearance of a valid hostname [4].

• Type IV - Misspelled or no domain name is given in the
URL [4].

The purpose of this obfuscation is to hide the true nature of
the URL and to make it appear to be a legitimate website,
tricking users into believing that the URL is safe. Obfuscation
also intends to make the URL more difficult to detect through
automated testing, but it is this fact however, that makes
these URLs look suspicious to advanced users and make them
identifiable by machine learning.

IV. COUNTER MEASURES

As mentioned in [2], the user is required to follow a URL
to become a target. This is where a large amount of research,
generated by the security industry, is focused and tries to find
methods of preventing users from following URLs which may
be potentially malicious or contain fraudulent content.

A. Blacklists

There are several blacklists available which are a collection
of malicious URLs and can be queried before visiting a page.
Phishtank is one such site and provides a blacklist of malicious
URLs which is supplied by the general public and then verified
as having malicious content [5], [6]. This is one method of
generating blacklists and can be very accurate as it uses human
verification. A disadvantage with this method of blacklisting
is that it can be slow as a direct result of the verification
process. Another difficulty is that it requires users to discover

malicious pages and report them. As a result, new malicious
pages simply may not be on the blacklist or may still be
waiting for verification.

Other methods for creating and maintaining blacklists are
outlined in [7] and [2] and include honeypot data, web crawlers
and heuristic content analysis of the particular webpage. How-
ever, these are not always accurate, as indicated by [2], because
malicious pages have been known to ’cloak’ themselves and
display specific content depending on who is requesting it. For
example, some pages will show completely benign content to
IP addresses originating from known security companies and
web crawlers, making them almost impossible to detect by
these methods.

These blacklists can be queried in several ways, examples
of this include browser plugins such as those offered by the
Microsoft Smart Screen service [8] and Google Safe Browsing
service [9], firewalls, proxies and search engines. Another
form of blacklisting occurs in spam filters which filter out
mail according to a blacklist of addresses.

The Google Smart Screen API may be used for the purpose
of creating URL blacklist filters and is available from [9]. An-
other method of implementing blacklisting is offered through
websites provided by security companies such as Norton [10]
where users may enter the URL of a suspect website before
visiting it to determine whether it is in the blacklist. This is
not an ideal situation as the user has to enter the URL into the
site which costs time and will almost definitely not be done
for every link that the user wishes to visit. A more effective
solution is to have each link checked as the user is browsing
through the use of browser extensions that use blacklists or
classifiers.

B. Classification

A new method of identifying potentially malicious web sites
is through the use of machine learning using Artificial Neural
Networks (ANN) as classifiers, such as those presented in [2],
[7], [6]. There are different approaches to this and vary in
terms of features that are analysed an learning algorithms used
to update the classifier.

The features analysed by a classifier can be identified as
host-based and lexical, the combination of the two is known
as full-featured analysis [6].

1) Host-based features: Host based features are those
that require the use of external sources. The two sources of
information used in [6] are WHOIS and Team Cymru which
is available from [11]. The following list describes important
information outlined in [2] and [7].

• WHOIS data - Details included are registration dates
of the domain, registrars and registrants. This allows
the classifier to determine how new the domain is and
whether or not the domain belongs to an individual
already associated with other malicious URLs. Also
identified as important information in [2] is the expiration



date and whether or not the WHOIS entry is locked.

• IP address information - [2] uses this information to
check whether or not an IP address is in a blacklist and
checks to see if the IPs of the A, MX and NS records
in within the same AS as each other. This feature is
described in [7] as including all identifying information
regarding the hosting of the website and includes the
IP address prefix and the AS number. This allows a
specific ISP’s IP prefix to be flagged as malicious by the
classifier. Also associated with this data is geolocation
of the IP address.

• Connection speed - This is cited as being an important
factor as malicious content is often hosted on
compromised machines, usually private machines
with low connection speeds such as DSL [7].

• Domain Name - Included in these properties are the
TTL, whether or not the certain keywords exist in the
hostname and if it contains an IP address [2].

These properties are common to almost all research
regarding classification using host-based features. The
features represent a valuable set of data and are fairly
easy to obtain through automated software. The negative
aspect of using these external features for classification
is that they may incur significant additional latency in
the case of using the classifier as a browser extension
and as such, may not be appropriate on connections
where bandwidth is limited [6].

2) Lexical features: Lexical features of a URL refer to the
actual text of a URL and include no external information.
These features are useful as malicious URLs often ”look”
different than benign ones to experts [2]. Features that belong
to this group include numerical information regarding lengths
of features, numbers of delimiters and directory structure.
This information is useful as it is obfuscation resistant [6].
The model outlined by [6] will be used for the purposes of
this research and will be described below.

• Automatic features - These features describe the URL in
the form of tokens and include items such as the domain
name, top-level domain, directory structure, the file
being accessed, it’s file type and the arguments passed.

• Domain name - Length, number of tokens and hyphens
are collected. Also, whether the domain name uses and
IP address or port number used as binary features that
are extracted from the domain name.

• Directory - Among the directory structure considerations
are how many directory traversals are used, the largest
number of delimiters used in a particular directory, and

the longest directory name.

• Filename - Extracted filename features include the length
of the filename and the number of delimiters

• Arguments - A very important factor in the feature
extraction is that of the arguments passed to the file.
These features include the number of variables passed,
the longest variable value passed and the highest number
of delimiters used.

C. Conclusion

These features, be it host-based, lexical or a combination of
both, are then run through a classifier which will then present a
prediction as to whether the URL is malicious or benign. This
is usually represented as a 1 for malicious or a 0 as benign.

V. LIGHTWEIGHT CLASSIFICATION ALGORITHMS

Classifiers range from state of the art machine learning
techniques to simple perceptrons. All classifying algorithms
share a common structure based on the structure of the
perceptron, but differ in feed forward propagation and back-
propagation learning algorithms. While the structure of these
simple artificial neural networks is shared, the learning mecha-
nism represents a significant difference and greatly affects the
effectiveness of the algorithm.

Classification algorithms which only use the lexical features
are known as lightweight classification algorithms and have a
major advantage over fully featured classification algorithms
as they do not require the use of external information sources
to make a prediction about the safety of a URL. This is
a noteworthy factor, especially when due consideration is
given to performance on the client’s side of the process, as
no additional latency is introduced through the execution of
lookups. Another positive factor in this regard is the use
of a feed forward mechanism of a neural network, which
may be executed efficiently, thereby speeding up the process
substantially.

A. Online Perceptron

The structure of a perceptron is known as a single neuron
artificial neural network. It consists of a number of input
neurons in a layer which take on the values of the input fields
that they represent. They also have a single neuron in a second
layer which is connected to the first via a series of weighted
connections and acts as a single output layer. The input layer is
not considered a layer in neural networks, so the single neuron
is considered the only layer and is thus known as a single layer
neural network and works as a binary linear classifier.

The neural network mechanism can be described as two
steps. The first step is used by the network to create a
prediction given the input supplied and is known as the ”Feed
forward” mechanism Firstly, the inputs are multiplied by their
respective weights and summed. This process is known as a



Linear Combiner and is given by:

Linear Combination =

n∑
i=1

xiwi (1)

The result of this is then passed through a hard limiter which
simply adds a bias (or threshold) to the value. This is then
compared to 0, and if it is greater than 0, the output is set
to 1, else it is set to false. This is known as a step activation
function.

The entrire feed forward mechanism is given by:

f (x) =

{
1 if x · w + b > 0
0 if x · w + b ≤ 0

}
(2)

Where f(x) represents the prediction, x represents the
input vector, w represents the weight vector assigned to the
inputs and b represents the bias (or threshold). This activation
function is known as a step activation function. In multilayer
neural networks, this step is repeated for each neuron on
each layer until the all neurons are activated. The final layer
represents the output and gives the entire network’s prediction
based on the supplied input.

The second step is known as the learning mechanism and
is used in conjunction with the feed forward mechanism to
facilitate the learning process. Learning requires that the input
data is ”labeled”. This means that a correct answer is supplied
with the input so that when the neural network generates a
prediction, the correct label can be used to create an error
value (γ). This value is then used by the back-propagation (or
learning) mechanism to update weights in the neural network.
This mechanism can be said to move through the neurons in
the same way that the feed forward mechanism does, only in
reverse.

The weight updates for the perceptron are calculated via the
following method:

γ = Yd − Y (3)

Where γ represents the error, Yd represents the desired output,
or the labeled output, and Y represents the actual output of the
neuron. The following formula shows how the change in any
particular weight may be calculated given the input associated
with that weight:

∆w = α× xi × γ (4)

Where ∆w represents the change to be made to the weight w
and α is the learning rate for the network. This learning rate
is a customizable value that must be larger than 0.

Finally the weights are adjusted via the following formula:

wt+1 = wt + ∆wt (5)

This process of using labeled training data is repeated until
the neural network’s error reaches an acceptable level. It is
important to note at this point that a perceptron using these
rules for weight training will only update values if an incorrect
prediction is made. Also, the perceptron uses a linear update
method which can be detrimental to the performance of the

network as it has the ability to over compensate when an error
is made.

It is shown in [6] that the online perceptron achieves an
accuracy of 93% to 96% when trained on data from phishtank
[5] and malwarepatrol [12]. It is indicated, however, that
different classifiers should be used for the two different sources
as they differ in the nature of the malicious URLs [6].

The basic model structure of the perceptron is shared by
all of the following lightweight classifiers that are described
here. As already mentioned, they only differ in their method
of training, which greatly affects the model’s ability to classify
URLs correctly.

B. Confidence Weighted Algorithm

The problem highlighted with the online perceptron is that
it has the tendency to over or under compensate for an error on
any particular feature. An example of such an error would oc-
cur if a domain is registered with URL features that resembles
a legitimate web site. When the classifier predicts (incorrectly)
that the URL is benign, it tries to correct itself with the same
linear update method for other, more identifiable, errors. The
Confidence Weighted (CW) algorithm tries to overcome this
by maintaining a confidence level in each feature (or input)
of the classifier [13]. This is done by keeping a record of the
mean µ of the input weights and a covariance matrix Σ. The
mean value for the input weight i is represented by µi while
Σi represents the algorithm’s confidence in the feature i. These
two features alow the algorithm to update itself in proportion
to the confidence that it has in any particular feature (smaller
changes for features with high confidence and larger changes
for ones with low confidence).

As indicated by [6], the weight of a feature i at a timestep
may be taken as µ for that feature. Classification of that URL
is done in the same way as that of the perceptron: through the
step activation function over the inputs and their respective
weights. The learning method of the CW is shown below:

(µt+1,Σt+1) = arg min
µΣ

DKL(N (µ,Σ)‖N (µt,Σt)), (6)

s.t.Prw∼N (µ,Σ)[yt(w · xt] ≥ η (7)

This equation is used to calculate the mean vector of the
weights and the covariance matrix for the next time step. DKL

represents the KL divergence between the normal distribu-
tions N (µ,Σ) and N (µt,Σt) and is a standard measure of
difference between distributions. It is shown in [6] that the
CW algoritm is accurate in about 98% of cases, only 1% less
accurate than a fully featured classification. This improvement
over the online perceptron is due to method in which CW
learns by updating through confidence levels in features.

C. Adaptive Regularization of Weights

One problem with the CW algorithm, highlighted in [6],
is that of noisy training data in terms of labels. If a URL
is labeled incorrectly, the CW may label that kind of site as
malicious in future. While it does not suffer highly from this
problem due to its confidence in features, it can still cause



enough of an error to start missing malicious sites. The idea
behind Adaptive Regularization of Weights (AROW) is to use
the CW’s method of confidence in features, but to modify it in
such a way as to be more tolerant of miss-labeled data [14].
The adapted learning method follows:

(µt+1,Σt+1) = arg min
µΣ

DKL(N (µ,Σ)‖N (µt,Σt)) (8)

+λ1lh2(yt, µ · xt) + λxTt Σxt, (9)
s.t.Prw∼N (µ,Σ)[yt(w · xt] ≥ η (10)

The extra fields include λn which are an adjustable parame-
ters according to [6] and yt which is the desired prediction of
the URL. This update to the CW makes AROW an accurate
and more robust classifier, able to handle noisy (incorrectly
labeled) training data. The authors of [6] achieved an accuracy
of 96% to 97%.

VI. APPLICATIONS

One of the largest advantages of the lightweight classifica-
tion of URLs is that it introduces little overhead in terms of
latency and processing. While this fact has been mentioned
several times in much of the work presented on the topic
and the example use of client-side browser plugins has been
mentioned, there are other uses to which this work can be put.

Firstly, a web proxy within an organisation may use the
classifier to filter malicious URLs from being visited. This may
be used on a standalone basis or it can be used to augment
the proxy’s existing blacklist of URLs. If the proxy receives
a request which the classifier predicts to be malicious, it may
deny the request and add the URL to the blacklist or another
database system for further analysis. Another use for these
lightweight classifiers is that the may be used as an initial
first pass of large URL logs when trying to analyse a network
incident. The URLs may then be flagged for further analysis
such as information gathering from external sources, such as
WHOIS data.

A. Implementation

The primary goal of this research is to implement all three of
these lightweight classifiers and to test them on data collected
from real world traffic. Finally, once they have been tested, the
classifiers will be put to work within a framework designed
for use in incident analysis, a browser plugin for use within
organisations and a tool designed to work with a proxy to filter
requests for malicious sites.

Another possible outcome of this implementation would be
to create a plugin for use within email clients that could scan
emails for URLs that link to malicious pages. This would be
especially useful in trying to combat fraudulent advertising
and would not be any different in terms of classifier than any
of the other tools mentioned here.

B. Training data

Le et al [6] trained classifiers on grouped data such as
the pairing of Phishtank and Yahoo random benign URLs.
They showed, through their results, that seperate classifiers
should be maintained for these different pairs as the data
from Phishtank and MalwarePatrol indicate different types of
malicious sites (phishing vs. malware) and that these different
classifiers results in a higher accuracy than the grouping of all
malicious URLs and all benign URLs.

VII. FUTURE WORK

Training data has already been collected from Phishtank,
MalwarePatrol and a live proxy, serving thousands of requests
a day. In excess of 4000 URLs have been gathered from
Phishtank as well as another 4000 from malware patrol. It
is important to note that the proxy data is already largely
filtered through standard means such as blacklisting. Also,
benign URLs have been gathered from Yahoo’s random URL
generator (available from [15]).

Software has already been written to handle formatting and
output of standardized labeled URLs from different sources. A
prototype implementation of the Online Perceptron has been
written in Matlab. Implementations of the CW and AROW
algorithms are nearing completion at the time of writing, and
will also be implemented in Matblab. The final implementation
for testing of these three algorithms will be written in python,
using the numpy package for integration with Matlab. Training
the classifiers will be done in the method suggested by
[6], where the data sources will be grouped by the type of
malicious content that they list. For this reason, two versions
of each classifier will be maintained, allowing these tools to
classify a URL in terms of malicious content in addition to
phishing content.

Once the these alogrithms have been tested, the tools men-
tioned in Applications will be implemented. The first will be a
browser plugin for the Firefox web browser. The second will
be a proxy plugin followed by a mail server addon. All of these
implementations will be updated through a central server that
will query external data sources periodically for new training
data with which to update its classification models. Finally, a
tool will be developed that will enable these classifiers to be
deployed as plugins for a forensic incident analysis framework.

VIII. CONCLUSION

The work presented by [2], [7], [5] has shown that the
effectiveness of lightweight classifier is only slightly lower
than that of fully-featured classification. Also, the ability
to classify a URL with extremely high accuracy and low
overhead means that it is ideal for use in browsers and as a
first pass analysis of large traffic logs. It is the intention of this
research to build these tools and to test their effectiveness in
real world situations using real world traffic data, primarily
using a proxy server that serves several thousand requests
a day and as modular tool built for use in a forensic data
gathering framework. These implementations will provide a



good understanding of how well lightweight classification
algorithms work in real time on real world networks.
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