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Abstract— Cloud computing is a new computing paradigm which 
presents challenges for digital forensic investigators. Digital 
forensics is a branch of computer security that makes use of 
electronic evidence to build up a criminal case or for 
troubleshooting purposes. Advances have been made since the 
advent of Cloud computing in addressing issues that came with 
the Cloud including that of security. However, not all aspects of 
security are advancing. Developments in digital forensics still 
leave a lot to be desired in terms of standards and appropriate 
digital forensic tools that are applicable in the Cloud. To achieve 
that, standards as well as standard tools are required for 
successful evidence collection, preservation, analysis and 
conviction in case of a criminal case. This paper contributes 
towards addressing issues in digital forensics by presenting an 
algorithm that can be used in the evidence identification phase of 
a digital forensic process. Data in Cloud environments exist in the 
Internet or in networked environments and data is always 
accessed remotely. There is therefore at least one connection to a 
host that exists in a Cloud environment. In a case of a computer 
system that hosts a Cloud service, the number of connections 
from clients can be very large. In such a scenario it is very hard 
to identify an attacker from both active and recently 
disconnected connections to a host. This may require an 
investigator to probe all individual IP addresses connected to the 
host which can be time consuming and costly. There is therefore 
a need for a mechanism that can identify and rank remote hosts 
that are connected to a victim host and that may be associated 
with a malicious activity. In this paper we present an algorithm 
that uses probabilities to identify and rank suspicious remote 
hosts connected to a victim host. This algorithm helps minimize 
the effort required of investigators to probe each IP address that 
is connected to a victim as connected IP addresses will be 
prioritized according to their rank. 
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II..   INTRODUCTION 

Cloud Computing is a relatively new computing paradigm. 
It still presents research issues in the field of computing. Those 
research issues mainly comprise issues of security. The aspect 
of computer security that this paper focuses on is that of digital 
forensics. Digital forensics (DF) is challenging in Cloud 
computing because of the distributed nature of the Cloud. 
Digital forensic investigations that involve the Cloud may be 
abandoned before perpetrators are successfully prosecuted. The 

reason for abandonment is that enterprises prefer to carry out 
an investigation if and only if it is cost-effective. That is, the 
costs of an investigation always need to be lower that the loss 
or the value of the assets that are vulnerable to the threat being 
investigated. Abandoning the case however is not helpful as the 
perpetrator may continue to commit the same crime. We 
address this issue of the costs involved when conducting an 
investigation in a Cloud environment. Our solution will 
contribute in improving the cost-effectiveness of a digital 
forensic investigation process. 

In Section II we present a brief background on Cloud 
computing and digital forensics. In section III we present our 
model that aims to minimize costs associated with conducting a 
digital forensic investigation in a Cloud environment. In 
section IV we present an example that shows how the model 
can be applied in practice. In section V we conclude the paper. 

IIII.. BACKGROUND

Cloud computing is built upon virtualization technologies. 
Hardware, platforms and software that were traditionally 
installed in the vicinity of the user are now offered as services 
by a third party [1], [2]. These services include storage and 
processing hardware, development platforms such as Java 
Virtual Machines (JVM), and software platforms such as 
human resource management systems. A third party may be 
another company within national boarders or a company 
outside national borders. In all of these scenarios the effort that 
would be required in carrying out digital forensic investigation 
differs. The costs, for example, will differ when a need to 
collaborate with international law enforcement agencies arises 
versus when collaboration is not required. This is one of the 
challenges faced by digital forensic investigators in a Cloud 
environment. 

Digital forensic readiness is another approach that is used 
to minimize efforts required and hence minimize costs when an 
investigation has to be carried out [3][4]. Digital forensics 
readiness makes data that may be used as evidence readily 
available throughout the lifetime of a live system or ICT 
infrastructure. This approach minimizes the effort needed to 
conduct the investigation as evidence is readily available. The 
investigation can quickly move to the advanced phases of an 
investigation process. Human resources required during an 
investigation are minimized and this also reduces the costs.  



Although there are benefits in incorporating digital forensic 
readiness into an infrastructure, not all infrastructures will do 
so. When an environment that is without forensic readiness 
mechanisms is compromised, a cost-effective investigation 
needs to be conducted as well. Shin in [5] attempts to reduce 
the costs of a digital forensic investigation by proposing a 
forensic procedure model.  Another model that takes costs into 
account in fraud detection is the one proposed by Stolfo, Fan, 
Lee, Prodromidis and Chan in [6]. In contrast to most Intrusion 
Detection models that concentrate on model accuracy, Stolfo et 
al take into consideration the costs implications that can result 
from an undetected fraudulent activity.  

Most of the research that address issues of digital forensics 
either focus on intrusion detection [6–8] which corresponds to 
an incident detection phase of a DF process or on the latter 
phases of the process, namely evidence collection and evidence 
analysis. This is a shortcoming of traditional digital forensic as 
data in the Cloud is huge, distributed and hence, very hard to 
collect. The evidence identification phase, which is not given 
much attention by researchers, can play a role in reducing the 
scope of data that needs to be collected as evidence. 

Cost of conducting an investigation in the Cloud is also 
increased by the lack of standards and tools. Traditional tools 
are not suitable for the Cloud due to the large amount of data 
hosted in it. One of the phases of the digital forensic 
investigation process presented in  the draft ISO/IEC standard 
in [9] is the evidence identification phase. The standard 
presents twelve phases of an investigation which are incident 
detection; first response; planning; preparation; incident scene 
documentation; potential evidence identification; potential 
evidence collection; potential evidence transportation; potential 
evidence storage; potential evidence analysis; presentation and 
conclusion. Potential evidence identification can play a major 
role in reducing the costs of a digital investigation in a Cloud 
environment. Data is distributed in the Cloud and this phase 
can optimize the identification and selection of locations from 
where evidence can be obtained. The model presented in this 
paper therefore contributes to improving this phase. 

In section III we present a mathematical modeling of the 
incident scene as well as our algorithm.  

IIIIII..  HOST SELECTION MODEL 

In this section we present a formal representation of an 
incident scene after it has been reported. We further present an 
algorithm that determines connected hosts that need to be 
investigated based on the presented model. 

AA..  Incident scene modeling 

Consider a live system host that hosts Cloud services in a 
Cloud environment on which an incident has been reported. As 
the host is residing in the Cloud, a large number of connections 
from remote hosts that consume the hosted Cloud service are 
expected. We represent a set of such remote hosts both 
connected and recently disconnected as follows: 

ܪ  ൌ ሼ݄௜|݄௜	݅ݏ	ܽ	݁ݐ݋݉݁ݎ	ݐݏ݋݄, ݅ ∈ Գሽ (1)

From the set of hosts that are connected or were connected 
to a victim, we need select and prioritize remote hosts for a cost 
effective investigation. A remote host can be associated with at 

least one active or inactive connection in the victim host. We 
refer to the set of hosts with active connections as ܪ஺  and the 
set of hosts with inactive connections to the victim host as ܪ஽. 
 .i.e .ܪ are covering subsets of	஽ܪ ஺ andܪ

ܪ ൌ ஺ܪ ∪ ஽ (2)ܪ

Incident types that can be detected in a computer 
environment are from a finite set defined in the computer 
security domain. In this paper we represent a set ܫ of incident 
types as follows:  

ܫ ൌ ሼ݅௞|݅௞, ݏ݅ ܽ ݁݌ݕݐ ,ݐ݊݁݀݅ܿ݊݅	݊ܽ	݂݋ ݇ ∈ Գሽ (3)

Each incident type can be associated with a subset of 
network connection attributes. Network connection attributes 
include the source and destination ports, among others. We 
represent the set of attributes, ܣ  as follows: 

ܣ ൌ ሼܽ௜|ܽ௜ , ܽ ሽ݁ݐݑܾ݅ݎݐݐܽ	݊݋݅ݐܿ݁݊݊݋ܿ (4)

Each attribute from set ܣ can take any value from a set of 
values. The values can either be discrete or continuous. A 
union of the sets of attribute values is represented by Equation 
(5). 

ܸ ൌራ ௜ܸ

௡

௜
ൌ ሼݔ|ݔ ∈ ௜ܸ, ݅ ∈ Գሽ 

(5)

We take as an example ଵܸ ∈ ܸ  to represent a distance 
between hosts. If we chose to represent distance between hosts 
as a number of hops, ଵܸwould be a set of natural numbers. 

The last set that we use in modeling the incident scene is 
the set of connections, ܥ. We represent the set in Equation (6):   

ܥ ൌ ሼܿ௜|ܿ௜, ݏ݅ ܽ ݀݊ܽ	݊݋݅ݐܿ݁݊݊݋ܿ	݇ݎ݋ݓݐ݁݊ ݅ ∈ Գሽ (6)

Each connection will have a subset of attributes from the   
set ܣ in Equation (4). Following the formal representation of 
the incident scene through the equations (1) through (6) we can 
now present the composition of functions that compute a set of 
prioritized hosts that need to be investigated. These functions 
are presented in the next section. 

BB..  Algorithm 

The algorithm starts with a function that takes the incident 
type as an input and provides a subset of attributes relevant to 
the scene. 

݂: ܫ → (7) ܣ

Usually when an incident is detected and reported, during 
the preliminary examination of the scene (such as the incident 
response phase), the incident type is also identified. The 
incident type helps in searching for relevant attributes in the 
victim host and this is the role of the function ݂ in Equation 
(7). For example, if the type of attack that is being investigated 
is the denial of service performed through the classic ping of 
death [10], an attribute that would be searched in the system 
would be that of protocol type from set ܣ, which would have a 
symbolic value of Internet Control Messaging Protocol (ICMP) 
from set ܸ. Other attributes may also be associated with a ping 
of death and such attributes would also be considered and 
included in set ܣ. Building the attributes set is the step that 



follows immediately after the incident type has been 
determined. 

Next, to associate the attributes set ܣ, in Equation (4) and 
the connections set ܥ  in Equation (6), only relations can be 
used and not functions. The reason being that a single 
connection can be associated with multiple attributes in the 
attributes set ܣ. Similarly, an attribute and its value may be 
associated with multiple connections in the connections set ܥ. 
i.e., ݂ሺܽሻ ൌ ݔ  and ݂ሺܽሻ ൌ ݕ  with ݔ ് ݕ . Thus, relations are 
not functional. We therefore represent the association with a 
symmetric relation ܴ, a subset of the Cartesian product  of sets 
 :as follows ܥ and ܣ

 ܴ ⊆ ܣ ൈ (8) ܥ

 We then define two functions that move from the relation 
ܴ  to produce the set of hosts to be investigated, ܪ . These 
functions are ݃  and ݄ . The function ݃  has the relation ܴ 
defined in Equation (8) as its domain and its range is ܥ. i.e, 

 ݃: ܴ → (9) ܥ

And function ݄ is a function with domain ܥ and the range, 
 ,i.e .ܪ

 ݄: ܥ → (10) ܪ

It is worth noting that,  ∀ܿ ∈ !∃ܥ ݄ ∈  This means that .ܪ
there is no connection that exits without source or destination 
host. The two functions form a composite function: 

 ݄°݃ ൌ ݄ሺ݃ሺܴሻሻ (11)

The functions, ݄ and ݃ utilize the characteristic functions ݇ 
and ݈ in Equations (12) and (13) in building the subsets. The 
characteristic functions are defined as follows: 

Let ܥ௝ ⊆ ܥ . And also let ܪ	 be a set of remote hosts,  
௝ܪ ⊆ ݆ and ܪ ∈ Գ. Characteristic functions that determine if a 
host or a connection is an element of the subsets ܥ௝	 and ܪ௝	 
respectively can be applied. These functions are denoted by  
݇஼ೕ and  ݈஼ೕ. 

 
݇஼ೕሺܿሻ ൌ ൜

1,			݂݅	ܿ ∈ ௝ܥ
0,			݂݅	ܿ ∉ ௝ܥ

 
(12)

Similarly,   

 
݈ுೕሺ݄ሻ ൌ ൜

1,			݂݅	݄ ∈ ௝ܪ
0,			݂݅	݄ ∉ ௝ܪ

 
(13)

Finally, there is a need to assign weights on each host based 
on factors such as the distance of the remote host away from 
the incident scene (locality). A remote host can be from within 
an organization, inter-organizational, from within the same 
country or from a foreign country. We assign values 0 through 
1 to each remote host represented in set ܪ . These weights 
reflect the effort (or cost) required to investigate a host. i.e.  

ܦ  ൌ ሼ݀|0 ൑ ݀ ൑ 1, ݀ ∈ Ժሽ (14)

These weights are used to further reduce the set of remote 
hosts produced by the composite function in Equation (11). 

With the incident scene and the algorithm as presented as 
above, the model can be implemented. To summarize the 
algorithm we make use of the flow chart represented in Figure 
1. 

The most critical part of the algorithm is the final stage 
where weights are assigned to hosts based on their location and 
number of connections. It is more costly to investigate hosts 
that are too far according to Equation (14) than it is to 
investigate a host that is closer. On the other hand, a remote 
host that has more multiple connections to a victim host has a 
higher probability to be an attacker.  

 
Figure 1: Hosts selection algorithm 
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In the selection process of the host the algorithm needs to 
find a balance between distance and the number of connections 
from a remote host. 

In the following section we demonstrate the applicability of 
our model to an incident scene and show how it can be used to 
select hosts for a cost effective investigation. 

IIVV..  EXAMPLE 

In this section we present as an example the representation 
of an incident scene using the model presented in section III. 
Typical data that can be found in a TCP dump are data such as 
the KDD99 data set described in [11], [12]. The KDD99 dump 
data comprises twenty-two attack types and these attacks are 
classified into four categories i.e., denial of service (DoS), 
unauthorized access from a remote machine (R2L), 
unauthorized access to local super user (root) privileges and 
surveillance and probing (probing) [13]. The data set has up to 
forty-one attributes that are associated with each network 
connection to the host. Much [6], [11], [12], [14–16] has 
focused on analyzing and classifying attacks in the data set. In 
this paper we assume classification has already been performed 
by the intrusion detection system that reported the incident. 
Our task is to identify hosts that can be prioritized for a cost-
effective digital forensic investigation. 

We start by mapping the information represented in the 
KDD99 data set into it. Since the data set has forty-one 
attributes, Equation (4) becomes: 

ܣ  ൌ ሼܽ௜|ܽ௜		, 1 ൑ ݅ ൑ 41, ݅ ∈ Գሽ (15)

Connections correspond to instances in the data set. With 
409021 records each corresponding to a connection, Equation 
(6) is as follows: 

ܥ  ൌ ሼܿ௜|ܿ௜, 1 ൑ ݅ ൑ 409021, ݅ ∈ Գሽ (16) 

The initial set of hosts denoted as ܪ௜௡௜௧ , comprises both 
source and destination attribute values from all the connections 
in the victim host. i.e., let ܫ௦ be a set of source IP addresses and 
 :ௗ be the set of destination IP addresses. Thereforeܫ

௜௡௜௧ܪ  ൌ ሼܫ௦ ∪ ௦ܫ|ௗܫ ∩ ௗܫ ൌ ∅ሽ (17)

Next, duplicate entries and local host IP address are 
removed from the set  ܪ௜௡௜௧ to obtain ܪ in Equation (1). Hence, 
the size of the set ܪ will therefore be: 

 
|ܪ| ൌ ൝

݊ െ 1 െ෍|݄௜|,			݂݅	∃݄௞ ∈ ܪ ∋ ݄௜ ൌ ݄௞

݊ െ 1,																			݂݅	∄݄௞ ∈ ܪ ∋ ݄௜ ൌ ݄௞
 

(18)

Where ݊ is the size of the combination of the sets of source 
and destination IP addresses, Equation (17). And ݄௜, ݄௞ ∈
 ௜௡௜௧. If we assume that the 409021 connections in the KDD99ܪ
data set did not have duplicate entries the size of set (|ܪ|) ܪ 
would be 409020.  

 With the data set mapped into our model, the simple 
algorithm presented in Figure 1 can be applied. The first step in 
the algorithm is to obtain the incident type as classified by an 
intrusion detection system or by any other means through 
which the incident was detected and reported. From the 

specified class or attack type, a subset of attributes from set ܣ 
in Equation (15) can be determined. In this example we refer to 
results obtained using entropy to determine a subset of 
attributes that best describe or isolate a class. Entropy was used 
in [11] and, [12]. If we consider the results obtained by Olusola 
et. al. in [11], the most relevant attributes to consider for the 
attack types satan, ip sweep, port sweep and nmap are as  
presented in Table I. These attributes would therefore be 
relevant when investigating an incident with a DoS attack.  

Table I: Attributes most relevant to attack types 

Attack type Attribute 

satan  diff server rate 

ipsweep  dest host name src port rate

portsweep  srv error rate 

nmap  source bytes 

 

The relevant attributes in Table I for a DoS incident have 
continuous values from set ܸ in Equation (5). Before the next 
step in our algorithm where connections related to the attributes 
are inferred. For attributes that have continuous values, 
thresholds need to be set by an investigator.  Based on these 
thresholds, connections that have any of these attributes above 
the threshold are included in set ܥ  in Equation (6). This is the 
role of function ݃  in Equation (13). From the output of ݃ , 
function ݄ builds a subset of hosts.  

Finally, the set of hosts ܪ is reduced further based on the 
assigned weighs in Equation (14). ܪ	will finally comprise of 
reduced list of remote hosts that will be investigated. 

VV..  CONCLUSION AND FUTURE WORK   

Digital forensics remains a challenge in Cloud 
environments despite developments in the security aspects of 
the Cloud. This is due to the lack of standards and tools that 
can be used in Cloud environments. This contributes to the 
escalation of costs when an investigation has to be conducted 
in a Cloud environment. An attempt is made in standardizing a 
digital forensic process through the draft standard in [9]. In 
this paper we contribute to the evidence detection phase of the 
standard. After an incident has been detected and reported in a 
distributed environment such as the Cloud, it is difficult to 
identify locations where evidence can be gathered. Crucial 
evidence may lie in a remote host that is connected to the 
incident scene. Our model identifies and prioritizes hosts that 
may contain evidence. The prioritization of the hosts to be 
investigated is based on the effort required to investigate the 
remote hosts given their proximity. We have demonstrated 
how this model can be applied in practice using the KDD99 
training data set.  

The model is aimed at minimizing costs involved in 
conducting a digital forensic investigation in a Cloud 
environment. As future work, we will model costs involved in 
conducting a digital forensic investigation in the Cloud. We 



will also demonstrate how the model presented in this paper 
minimizes the cost in terms of monitory values.  
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