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Abstract—The ability to provide the simulation of packets
traversing an internet path is an integral part of providing realis-
tic simulations for network training, and cyber defence exercises.
This paper builds on previous work, and considers an in-kernel
approach to solving the routing simulation problem. The in-
kernel approach is anticipated to allow the framework to be able
to achieve throughput rates of 1GB/s or higher using commodity
hardware. Processes that run outside the context of the kernel
of most operating system require context switching to access
hardware and kernel modules. This leads to considerable delays
in the processes, such as network simulators, that frequently
access hardware such as hard disk accesses and network packet
handling. To mitigate this problem, as experienced with earlier
implementations, this research looks towards implementing a
kernel module to handle network routing and simulation within
a UNIX based system. This would remove delays incurred from
context switching and allows for direct access to the hardware
components of the host.

This implementation evaluates the use of Work Queues within
the Linux Kernel to schedule packets, and Radix Trees store
routing information in the form of Nodes. The memory and
CPU requirements are taken into consideration, and conclusions
towards the trade off of resources for higher throughput and
speeds are discussed.

Preliminary tests using this implementation method have
achieved throughput rates in routing packets from core to end-
point host at speeds up to 1 gigabit. This however, is subject to
host load, network size and number of packets being routed
simultaneously at the time of transaction. These factors are
discussed and suggestions made towards further optimisations.

Index Terms—Packet routing, networks, simulation.

I. INTRODUCTION

This builds on earlier Exploratory work
that looks into high speed network simulation in software on
commodity hardware [1].

A. Problem Statement

Routing simulation software implemented outside of kernel
space on a UNIX system is subject to many process context
switches when handling packet buffering during transmissions.
This leads to major slowdowns as the simulation software
often has to under go context switching to swap between user
space, where data would be processed, and kernel space, where
data would be sent and received, to transfer buffers to do each
task.

B. Research Goals

The need to simulate is often a question that arises before
implementation or further study of a topic. The simplest
answer is that not every environment is ideal, as many im-
plementations assume, or there are cases that are overlooked
during design, implementation and testing phases of an imple-
mentation. These oversights are more easily brought to light
through testing of systems in a pseudo-live environment such
as a simulation [2].

This research looks into implementing a routing simulator
that executes in kernel space. This will allow for a zero-
copy architecture to be put in place and take advantage of
data structures like work queues and radix-trees to allow for
asynchrony and fast data access.

Throughput is also taken into account and this implemen-
tation looks to maximize this key feature of packet routing
simulation. This leads to the need for pre-processing data
before simulation, and storing results for re-use during simu-
lation. The pre-processing is achieved through configuration
script generation from traceroutes prior to the simulation
instance, this is then loaded at run time. This is discussed
in Section III-D of this paper.

Routing within this simulator will be done through the use
of forwarding tables. These allow for a reduction in data
access within the simulator, as well as a reduction in memory
requirements of nodes within the simulated network. This is
also explained in section III-C of this paper.

In this paper, the literature review is discussed first in
Section II. This section involves explaining why simulation
is important, how data is collected, performance trade-offs,
and what packet routing actually involves.

In Section III, one can find the design taken in implementing
this research and what considerations were taken into account
when producing this routing simulator. This is followed by
testing of the routing simulator in Section IV where throughput
and memory usage are the primary focus of testing. The paper
then concludes in Section V.

II. LITERATURE REVIEW

There is a need to understand what approaches have been
taken, and research has been done in this field before moving
onto the design and implementation of this routing simulator.



This is essential as there is little merit in reproducing results,
or going down paths that have already been found to yield
little success.

A. Importance of Simulation

Simulation is the process of creating a model that represents
an implemented system, or system that is still to be imple-
mented, and running tests against it to understand where its
strengths and flaws exist [3].

As a system becomes more and more complex, so the
probability of errors or oversights increases. These can have
major repercussions and lead to failures of a product or a
project. Also the average cases, as usually portrayed through
graphs and spread sheets, don’t always hold in real implemen-
tations [4].

An example would be in the case of an implemented server
that is required to process ten clients a minute. The average re-
quest would appear every six seconds, and so implementation
could be aimed at handling this. Now in real world application
all ten request could happen in the first 10 seconds, this would
cause the server to fail. A simulation run at this point before
real world implementation would pick up this problem and
lead to its mitigation.

With this in mind, one should beware of misconceptions
that may arise because a system has undergone simulation.
Just because a system has been simulated, does not mean it
is error free. There are some errors that can only be found
when a system has already gone live and so one must remain
cautious [5].

B. Packet Routing

Packet routing is simply the process of moving packets from
a source host to a destination host through a network [6]. A
route may simply be a direct connection to the destination host,
or it may involve a series of hops through routers, hubs and
even load balancing systems. As networks grow through the
addition of more hosts, so the number of connections a single
node has grows; this leads to greater complexity within the
networks, and so the chances of a single node being connected
to only one other node or host decreases. This growth in
complexity leads to the need for classification and more
efficient algorithms to successfully route packets. Currently we
classify routing protocols into three major categories. Interior
gateway routing through works link state routing protocols,
interior gateway routing through path vector or distance vector
protocols, and exterior gateway routing. These combine to
remove circular routes within networks, and find shortest paths
from packet source to destination[7].

C. Existing Approaches to Network Simulation

Approaches taken can be broken up into three main cat-
egories, being hardware, software and hybrids which are
a combination for both hardware and software. Hardware
approaches, as produced by Apposite Technologies [8] and
Packet Storm [9], are in most cases less cost effective but

easier to set up as the hardware is designed to handle net-
work simulation. One can find cheaper or free alternatives in
software or hybrid systems that exist.

Software approaches, such as NS-3 [10], are slower in
execution due to the fact that the hardware in which the
simulator runs on is not designed specifically for network
simulation. Although this is a more cost effective approach, it
can lead to complicated software, as configuring hardware for
which the original intention was not for network simulation
can be tedious.

A hybrid implementation does have its advantages as well
as its disadvantages. Being able to run hardware that works
in parallel with the software implementation can be a major
benefit. The disadvantages of this however, is bottlenecks.
Specifically the time it takes to offload the data required for
processing to another device. This may be unnoticeable under
light load but can cause major slow downs as the systems
takes on a heavier load.

D. Collecting Routing Data

A simple tool to enumerate routes around a network on most
platforms is traceroute, the implementation for a Windows
based host is tracert. This program is used by passing it a series
of options, if any, and then an IP or host name as arguments.
These options range from setting the hop limit between
nodes to defining what protocol to use when performing the
traceroute. The protocols range from using standard TCP [11],
UDP [12] and ICMP [13] route tracing methods, to using IP
as an alternate as defined in RFC 1393 [14]. UDP is the
default protocol used with in the route tracing software on
most platforms, and makes use of sending packets to ports
that are expected to be closed [15]. This results in a ICMP
message being returned about the ports status at which the
destination is then marked as reached.

These programs result in showing every hop in the route
from source to destination, including delays, name, and any
IP address changes along the way. This becomes particularly
useful when looking into recreating live networks. One can
simply trace the routes to every known host machine on
a network, and then recreate the network using the routes
returned.

CAIDA1 is an association that can aid in doing just that.
They collect data about the Internet from average delays and
packet loss to existing routes. Furthermore, they make this
data available for research on request [16]. This is particularly
useful in recreating a large portion of a network based on the
Internet as a model. This can lead into DoS (Denial of Service)
attack testing and worst case scenario recovery tests in disaster
simulations in an existing real world context.

E. Performance

The most resource intensive process that takes place within a
routing simulator is the actual routing of packets. This involves
searching for where the packet is destined, keeping track of

1http://www.caida.org/data



where it is currently and when it has reached the end of its
life. This is a fairly trivial task in a single case, however there
are many packets in flight at any time within a network. This
leads to high CPU and Memory requirements from the host
system [17].

There are two main methods in which packet routing
is implemented, both with their own flaws. These methods
use either a global routing table that stores every route, or
forwarding tables at each individual node [17]. Global routing
tables allow for a large portion of routing information to be
pre-processed. This allows for requirements to be reduced in
terms of CPU processing power and instead these results to
take up more memory on the host system. Use of forwarding
tables in nodes allow for data to be simplified and only
forwarding information needs to be stored at each node. This
method requires more CPU processing power as routes will
need to be calculated at every hop in a route.

There are also restriction that have to be considered when
addressing address space. The two main protocols used are
IPv4 [18] and IPv6 [19]. The major difference between these
two protocols is the unique address space. IPv4 has 232 unique
addresses, where IPv6 has 2128; this open up 296 more unique
addresses for routing to nodes. When taking the sheer size of
IPv6’s address space and comparing it against a commodity
64-bit architecture based system, it is clear that there is no
easy way to map 2128 into 264 of addressable memory in a
64-bit architecture. IPv4’s 232 address space can be mapped
on a 64-bit system though.

When bringing modern CPUs into account, we see the ever
growing foothold that multi-core processors are making in
commodity hardware and embedded devices, and even how it
can improve networking performance [20]. The link is fairly
simple when looking at how multi-core processors that can
handle multiple processes in parallel can aid network route
simulation. Many packets need to be routed in parallel, and
so allowing multiple processes to run on a CPU allows the
host system to achieve routing in parallel.

III. DESIGN

A. Kernel Architecture

The use of kernel space over user space is primarily for
speed up purposes only, however this method comes with
increased risks in the event of a software flaw. User space has
been shown to have slower process speeds in both memory-
based web servers [21] and in simple mail box and message
queues servers [22]. Both systems were run on UNIX based
operating systems and made use of network, memory and CPU
resources.

User space can be best described as a secure sand-box
running within kernel space. In user space, a process has to
make a request for resources to kernel space before they are
allocated to the process in user space. This requires context
switching of the process in user space when requesting a
hardware resource to allow the kernel process that handles that
resource to be queued on the CPU. What makes this worse
is that another context switch is required to go back to the

process that made the request in user space. This can happen
several times per request [23].

The use of kernel space also allows for an implementation of
zero-copy. This essentially means that on receiving or sending
of a packet, the buffer requires no coping between kernel
space and user space [24]. This is due to the fact that the
implementation will be executed in kernel space only. As such,
there is no need to pass buffers between the kernel and user
space because of this.

Further motivation for a software driven approach within
a kernel space context is that when compared to hardware
approaches, software scales with time. Hardware only has the
the processing power of when it was made, where as software
has the processing power of the system in which it is run on. In
time dedicated hardware becomes obsolete where as software
can just be moved to a newer system.

B. Memory Structure

An effective memory structure is also required for node
stores within the simulated network. These nodes hold in-
formation such as connections, delays, node IP and name.
Memory use should be kept to minimum as there can be
numerous nodes within a network, but access times should
be as fast as possible too. For this a radix tree was taken into
consideration as this system looks up nodes on a IP prefix.

This data structure has the advantage of only allocating
memory when required, this allows this implementation to
allocate and de-allocate nodes in memory only when required.
The other benefit is fairly few memory accesses to reach the
node requested for look up as searches are processed through
IP prefixes [25]. Although not as fast as an array, which is
O(1) in access complexity on standard sequentially processed
programs, an array requires memory to be reserved for data
structures that haven’t even been, or will be instantiated.

A radix tree makes use of of prefix based tree search that in
the worst case follows an O(n) complexity [26]. This is useful
as IP is a prefix based addressing system and thus is suited to
storage under a radix tree.

C. Routing through Asynchrony

The method in which a packet is routed in the simulated
network can have a large effect on the hosts throughput
ability. The need for a scalable architecture is required for the
routing algorithm, allowing the structure of the nodes within
the simulated network to closely resemble the Internet. Nodes
acting as routers will make use of forwarding tables and keep
lists of connections along with delays of each connection to
ensure accurate implementation of links within the simulation.

Firstly the use of forwarding tables stored within each node
serves as a memory reduction implementation. Links that are
found to be similar, look identical under a shared subnet mask,
are compressed into a single entry using the same link they
were both destined for. This also aids in faster routing as there
are less items to search through to find a packets destined
outbound link.



Fig. 1. Routing Logic in Routing Simulator

Delay is another key feature that this network simulation
must keep in scope. A delay in a connection is effectively a
time period in which no routing is being done, and instead the
packet is waiting to be moved. This can be seen as a sleep to
a threaded handler.

Rather than using threads, a higher throughput has been
shown to come from asynchronous calls to the operating
system [27]. The use of work queues allows for just this as it
acts as an asynchronous scheduler [28]. One can simply put
a routed packet with its status, such as current hop IP and
headers, into a work queue data structure. Following this, one
simply needs to set the item to be scheduled to asynchronously
return from the work queue on the time inserted into work
queue, plus the delay to the next hop.

This also removes the excess thread clutter as a thread is
only spawned for packets routing when it reaches the head of
the work queue. After an item gets put back into the work
queue, or is emitted back onto the network, the thread is
destroyed rather than put to sleep. This also allows for the
delegating the task of scheduling to the kernel, thus keeping
design focussed on how the routing is done rather than how
to schedule a packet to be routed.

Figure 1 shows a simplification in the routing logic and
the application of work queues within it. First we see the
packet being brought off the wire by the network handler.
As this is a core routing simulator, we are concerned with
the routing from the top of the network outwards. This means
that there is a delay applied to simulate the packet flow to the
core of the network, real packet routing simulation continues
from this point. The packet is given a delay to get to the
core on receiving it into the simulation, this is then wrapped
into a work queue structure, and put into the work queue and

scheduled to reach the head of the queue after delay time
passes.

We can see once a packet comes off the head of the queue,
it has to be routed. This is done through looking up the current
node’s forwarding table where the packet currently resides. If
a forwarding route is found for the packet, it is routed along
that connection, else the packet is dropped with a relevant
ICMP response to the source IP.

If the packet successfully reaches its destination IP, the sub
process that looks up if the simulated node is connected to
a real host starts. If a real host is found, the packet headers
get modified so that the destination of packet emission reflects
that of the real host. The real host then responds back into the
simulation if it needs to, and routing continues.

D. Configuration

Ease of use is often an oversight in software implementa-
tions. In the case of simulation software, being able to generate
a re-usable configuration should be included in design. This
simulator reads in configuration scripts which contain each
node in the network, their forwarding tables’ data and simu-
lated node to real world host bindings. This allows for quick
configuration as well as fast repetition of testing environments.

The data used for generating reusable configurations should
be readily available and easy to acquire. For this data is used
from traceroute, as described in Section II-D, to collect and
generate data from. The format returned form this program
follows a logical ordering and can easily be processed into
configuration data files.

These configuration files are simply loaded in through a
single command that then reads in and calls all necessary
functions to create the network depicted by the configuration.
These functions can be called manually as well to allow for
fine tuning to replicate specific events within a network.

IV. TESTS AND RESULTS

These tests are aimed at finding the throughput of this
routing simulator, as well as memory requirements to simulate
a network. The hardware the system tested on consisted of a
Intel Pentium Dual E2220 clocked at 2.40 gigahertz, 2 giga-
bytes of DDR2 RAM clocked at 800 megahertz, and a NetLink
BCM57788 Gigabit Ethernet Controller. This processor was
released July 20081 and so is fairly dated and so will give
a good baseline for testing. If this configuration runs well,
then modern hardware can be ensured to be effective with
this packet routing software. Linux Ubuntu 12.04 (Precise
Pangolin) was used in these tests, the kernel version was 3.2.0-
23-generic at time of testing.

A. Memory Usage

The network in this routing simulator is buffered in memory.
Thus the larger the simulated network gets, the more memory
one requires. Memory allocation can be broken down into
three main areas; memory allocated to creation of a nodes

1http://ark.intel.com/products/32430/Intel-Pentium-Processor-E2220-1M-
Cache-2 40-GHz-800-MHz-FSB



within the network, memory allocated to forwarding tables
within nodes, and finally memory allocated to packets that are
being routed within the simulation.

Calculating the amount of memory needed for packets
within the simulation is fairly trivial. This is done by taking
the average packet throughput of the simulation in bits and
dividing it by eight to get the requirement in bytes, from
here the conversion is even easier to megabytes. Due to the
nature of packet throughput being sporadic at best, getting
a repeatable memory requirement reading is near impossible.
The best solution, as for mentioned, is to simply work out an
average and account for the overhead with an estimation.

Throughput =
∑

(Packet Bit Size)
Total Time

Required Memory (Bytes) =
Throughput + Overhead

8

The test for the memory usage of a node and forwarding
table assignments is repeatable, and re-usable. This test aims to
find the average memory requirements of a fixed size network
with a varying number of forwarding table entries per node.
The number of forwarding entries is based on an average
number and is distributed as such.

The reason for varying the number of forwarding entries lies
in the fact that the addition of an extra node in the simulator
essentially raises a flag saying that the node exists. This is
not too memory taxing. When considering adding forwarding
information, where a single node can hold numerous entries,
the memory consumption becomes a lot higher and so should
be the focus of this test.

In Figure 2 we can see a growing requirement for memory
as more forwarding entries are added to the tables of the
1000000 nodes. The trend is linear, as if one creates new nodes
according to an average number of forwarding table entries,
then the memory requirements for a new node with entries
stays constant.

The average requirement for 5 forwarding entries added to
each of the 1000000 nodes in the simulated network is 208,9
megabytes, this excludes the initial node creation which is 23,8
megabytes. If one were to use these averages to estimate an
expected value on an internet level routing simulation. Using
figures from the Internet System Consortium [29], we can
estimate that there are close to 1 billion reachable nodes that
are open to the Internet. Using this information to simulate
every findable node on the internet, one would require around
741,9 gigabytes of memory. A number that considering the
scale, is not too large, although expensive to acquire.

B. Throughput

As this is a packet routing simulator, the ability to receive,
route and transmit as many packets as possible is a key
function of this implementation. The sum of the throughput
of all packets sent onto a network cannot exceed that of the
total throughput of the routing simulator if it is to receive and
route all packets introduced onto the network successfully.

Fig. 2. Memory Usage vs Number of Average Forwarding Entries per Node
within 1 000 000 Nodes

As the available hardware at time of testing could only sync
at 1 gigabit, these tests aim to achieve this as a throughput.
Furthermore, these tests aim to achieve this on supporting
hardware, such as CPU and RAM, that can be found in a
low-end computer found in store at the time of this testing.

The test entails, sending 128 megabytes (1 gigabit) of data
into the simulator using TCP. This is then routed through the
simulated network and transmitted to the host that is bound
to the destined simulated node. The times taken to transmit
this data is then recorded. The size of the data each packet
is transferring is set to 1024 bytes (4096 bits), this excludes
headers. To work out the throughput one simply divides 1
gigabit by the time taken to transfer it. This results in bits per
second and so the routers throughput is calculated.

Figure 3 depicts the results from this test. One would expect
the results to be consistent however, as the protocol used was
TCP, there are missed packets that need to be accounted for
along with other overheads such as packet headers. This brings
in extra data into the simulation that is not accounted for in
the original calculation; the headers for Ethernet IP and TCP
alone being 14 bytes, 20 bytes and again 20 bytes respectively.

The average time taken to transmit 1 gigabit of data over
all tests is 1,295 seconds. This brings the throughput of this
routing simulator to 829,248 megabits per second. Taking this
further and including the overheads for packet headers the
total data transferred, without resent packets, is 1.053 gigabit.
When reworking the throughput with this figure that includes
the headers, one finds the throughput to be 872,869 megabits
per second.



Fig. 3. Time Taken to Route 1 Gigabit Over Multiple Tests

These results prove quite satisfactory as this hardware is
found within the entry-level specifications of computers at
the time of these tests. This suggests strongly that running
this routing simulator on high-end hardware should prove to
achieve throughputs well over 1 gigabit per second.

V. CONCLUSION

This research looked towards the design and implementation
of a kernel based packet routing simulator that could achieve
throughput greater than 1 gigabit. This was done through the
use of work queues to create a asynchronous environment,
coupled with the use of radix-trees for fast memory accesses
by reduction of memory accesses to lookup a node within the
network.

In closing, this routing simulator shows that a kernel based
software implementation of a packet routing simulator can
achieve throughput of over 1 GBps when using entry-level
to mid-ranged desktop computing hardware. This can also
be done with a relatively low requirement on memory when
considering the trade off of CPU time to memory in pre-
calculated forwarding tables and network configuration.
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