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Abstract—This paper proposes a high-level architecture to
support efficient, massively parallel packet classification, filtering
and analysis using commodity Graphics Processing Unit (GPU)
hardware. The proposed architecture aims to provide a flexible
and efficient parallel packet processing and analysis framework,
supporting complex programmable filtering, data mining op-
erations, statistical analysis functions and traffic visualisation,
with minimal CPU overhead. In particular, this framework aims
to provide a robust set of high-speed analysis functionality,
in order to dramatically reduce the time required to process
and analyse extremely large network traces. This architecture
derives from initial research, which has shown GPU co-processors
to be effective in accelerating packet classification to up to
tera-bit speeds with minimal CPU overhead, far exceeding the
bandwidth capacity between standard long term storage and the
GPU device. This paper provides a high-level overview of the
proposed architecture and its primary components, motivated
by the results of prior research in the field.

Index Terms—Data mining, Computer networks, Information
security, GPGPU.

I. INTRODUCTION

Network packet traces (also referred to as captures) are
repositories for large amounts of useful technical, forensic
and statistical information, as they contain a record of all
network activity intercepted over an arbitrary period of time
at particular network interface. Traces collected over long
intervals (spanning months or years) provide a historical record
of traffic dynamics, incidents and malicious activity [1]]. In ad-
dition, long term packet traces are used to store data collected
at network telescopes in order to study Internet Background
Radiation (IBR) [2]], [3]], such as the propagation and impact
of large scale internet events and worm outbreaks [1]]. Unfortu-
nately large traces containing hundreds of millions or billions
of packets are computationally expensive and extremely time
consuming to process, which makes identifying interesting
data tedious, and exploration extremely difficult. To address
this, prior research has investigated the use of Graphics Pro-
cessing Unit (GPU) co-processors to accelerate classification,
in order to simplify and accelerate packet classification. This
research determined that modern commodity GPUs provide a
wealth of a spare massively-parallel processing power which,
if used appropriately, can be applied to dramatically improve
filtering performance [4].
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This paper presents an overview of a GPU based archi-
tecture for accelerating and simplifying the analysis of large
trace files, based largely on findings and insights gained from
prior research. The primary focus of this overview are the
four main components used in capture processing: the program
compiler, which generates encoded filtering instructions; the
capture manager, which marshals data efficiently from long
term storage; the GPU classification virtual machine, which
executes encoded filter programs and harvests packet data;
and the capture visualiser, which provides high-level capture
information to the user. As this paper focuses on high-
level, abstract architecture, discussion relating to the technical
implementation of components is limited. Significant details
relating to the actual implementation of many components may
however be found in other component-specific publications,
which are referenced in text when available.

This paper is structured as follows. Section 2 introduces the
domain of packet analysis, describes prior research, and details
related work in the field. Section 3 provides an overview of
the larger GPU accelerated packet analysis framework, and
briefly describes its four primary components. These com-
ponents include the capture manager, packet filtering virtual
machine, program compiler and trace visualiser. Section 4
briefly considers some wider applications of the framework,
while Section 5 concludes with a summary.

II. BACKGROUND

In the context of computational networks, packets are struc-
tured units of data which facilitate all remote communica-
tion. A packet comprises a set of ordered, protocol-specific
transmission directives (called protocol headers), followed by
a segment of application-specific transmission data, which
together facilitate communication between remote hosts. Each
successive protocol header is contained within the payload
section of the previous protocol header, with most packets
comprising several protocol layers. Protocol headers vary
considerably in terms of structure, complexity and variability.
While some protocols, such as the User Datagram Protocol
(UDP), contain only a few statically defined and predictable
field locations, other protocols (such as TCP) include optional
and variable length fields which require parsing and evaluating
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Figure 1. The structure of a PCAP packet trace.

earlier fields in the protocol header to identify. The volume of
data contained in a particular packet depends on its purpose,
and may vary greatly from simple host name resolution
requests to large chunks of multimedia data. As a result, packet
lengths may vary significantly, ranging from tens to thousands
of bytes.

A. Packet Traces

Packet traces are static records of otherwise transient packet
transmissions, typically captured at a specific live network
interface over a set period of time. The most common open
format is the pcap dumpfile format [5], which originated as
part of the libpcap UN*X library. The pcap capture format
stores packets in a linked list configuration, which supports
arbitrary packet sizes without the need padding, and allows
for new packets to be appended to the file on the fly, without
needing to add or change existing records. The capture file
structure [6], illustrated in Figure [I] begins with a 24 byte
Global Header detailing information specific to the entire cap-
ture, which is followed by a list of packet records, comprising
a 16 byte Packet Header followed by the raw packet byte array.

B. Prior Research

The architecture presented in this paper extends and expands
upon prior research into efficient, massively-parallel packet
header classification on GPU hardware. This research resulted
in a prototype general packet classification engine called GPF,
designed specifically for efficient GPU-based execution. The
prototype algorithm was comprised of two primary execution
phases, partitioned into separate CUDA (Compute Unified
Device Architecture) kernel functions [7]. Together these
provided a memory efficient method of processing multiple
statically defined packet header based predicates concurrently.
A high-level overview of the architecture of GPF is provided
in Figure [2]

GPF filter programs are written in a simple high-level Do-
main Specific Language (DSL) [8]] for specifying filter pred-
icates, which are compiled to two or three highly-optimised
low-level integer based instruction arrays. The first integer ar-
ray encodes all the packet data comparison operations required
to evaluate all filter predicates, while the remaining arrays
encode predicate expressions. In the first phase of execution,
the first integer array is used to sequentially evaluate all com-
parisons to packet data for all specified filters, caching chunks
of data locally to reduce global memory overhead and storing
results in coalesced arrays in device global memory. During
the second phase, these results are used in combination with
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Figure 2. Overview of the architecture of the GPF prototype classifier.

the remaining integer arrays to evaluate all filter predicates and
sub-predicates, generating individual arrays of boolean results
for every specified filter. The primary benefit of this approach
is that it avoids thread divergence by supplying all threads
with the same set of instructions, thereby minimising thread
divergence while simultaneously providing native multi-match
filtering support.

This classification approach, supported by a range of support
processes and data structures, ultimately produced promising
results which significantly improved upon processing times
of comparative CPU classifiers. This research is discussed
in detail in [4], and includes a complete description of the
construction of the classification algorithm and its associated
DSLs. Subsequent research focused on the construction of
CaptureFoundry, a capture analysis, manipulation and filtering
tool which utilised an enhanced high register pressure [9]
version of the classification kernels, an OpenTK based visual-
isation component, and highly optimised threaded supporting
architecture to simplify and accelerate the processing of large
packet trace files. This research is described in [10].

C. Related Research

The domains of packet classification and GPGPU (General
Processing on GPUs) are both active research areas, and en-
compass a broad range of diverse research. Literature relating
to GPU accelerated packet classification is relatively scarce
however, seemingly due, in part, to a perceived high level
of incompatibility between traditional packet classification
algorithms and GPU hardware design, and and strong trend
towards fast IP classification algorithms [[L1], [12], [13[over
more flexible protocol-independent classification [4], [14],
[[15]]. The most closely related significant publication describes
Gnort, a GPU implementation of the Snort intrusion detection
algorithm [16], was the first GPU accelerated application to
accelerate packet analysis operations. Gnort used a fast parallel
string matching algorithm to process packet payloads and
identify threats using the Snort rule set. Gnort did not provide
any GPU accelerated packet classification functions, however,
and relied on PCAPs significantly slower CPU classification
algorithm to perform pre-filtering, ultimately bottlenecking its
performance.
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Figure 3.  Comparative performance of Wireshark and CaptureFoundry
analysing various traces on HDD and SSD mediums.

III. ARCHITECTURE OVERVIEW

This section introduces and motivates the proposed
GPU based packet processing architecture, and provides an
overview of its primary system components and how they re-
late to each other, in order to supply context for the remaining
sections which focus on these components individually. This
architecture is intended to facilitate rapid detailed analysis
and exploration of extremely large packet trace files spanning
hundreds of gigabytes, terabytes, or more, while consuming
as few host resources as possible.

A. Architecture Motivation

The architecture described in this section was heavily in-
fluenced by the results of the prototype described in Section
which illuminated numerous potential opportunities for
improvement and optimisation, and highlighted several areas
of concern. Many of these observations may be seen in the
performance results of the application, particularly when these
results are compared with that of Wireshark, which uses
pcap for packet classification, across different hard drives.
To this end, Figure [3| shows the comparative performance of
CaptureFoundry, utilising the prototype filtering architecture,
and Wireshark when reading traces from both a Hard Disk
Drive (HDD) and a Solid State Drive (SSD) over a SATA3
interface. In addition, Figure ] shows the length of time spent
by the prototype algorithm buffering, transferring and filtering
packet capture data.

The performance results in Figure [3] show that while the
while Wireshark maintains roughly equivalent performance
across both HDDs and SSDs, CaptureFoundry’s performance
scaled proportionately with respect to the speed of the storage
medium utilised. This implies that while Wireshark’s classi-
fication performance is processor-bound, the performance of
the prototype is bandwidth bound. When considered in com-
bination with Figure ] which shows that prototype filtering
engine is capable of processing packet data almost two orders
of magnitude faster than the trace reading process is capable
of providing it. Additionally, it shows that the transfer process
between the host and the GPU is significantly faster than the
classification process.
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Figure 4. Total number of milliseconds spent buffering, transferring and
classifying 107 packets against several IP-based filters on various GPUs.

With respect to the GPU classification process this is a
highly promising result, as it indicates that the GPU is being
under-utilised and left in an idle state for the majority of
execution time. As buffering and classification are performed
concurrently, the idle time of the GPU classification process
can be used to perform more complex analysis of packet data
by increasing the complexity of the classification algorithm
without sacrificing overall performance. This is of particular
significance, as the prototype classification engine is limited in
a number of ways. For instance, it is not capable of adjusting
classification execution based on data contained within a
packet, which makes processing optional or variable length
fields accurately and efficiently untenable. Furthermore, packet
data cannot be collected, processed, or output to the user,
which limits the potential versatility of classification engine.
Unfortunately, Figure [4] also indicates a significant trace pro-
cessing performance bottleneck, as classification performance
is bound by how fast packet data can be read from long term
storage. Given that the relative processing speed of GPU co-
processors is improving at a significantly faster rate than that
of long-term storage medium read speeds, and the limited
capacity of fast SSD media preventing their use for terabyte
sized captures, it is important to find a way mitigate this
bottleneck in some way.

The other significant areas of concern with respect to the
prototype are the difficulty inherent in programming useful
filters using the prototypes simple Domain Specific Language,
which requires significant knowledge of header protocols to
use effectively, and the lack of a means to impart the results
of filtering to the user in a meaningful and understandable
way. In order to improve the power, flexibility and speed of
the GPU classification system, these observations were used to
refine and expand on the prototype architecture. The resultant
architectural design is provided in the following section.

B. GPU Platform

The Nvidia CUDA platform is used to support the GPU
processing functions used in this architecture. The motivation
for this is relatively simple; the development of the prototype
classifier, from which this architecture is primarily derived,
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began when OpenCL was in its infancy, and suffered from
limited functionality and hardware support. The CUDA frame-
work, in contrast, was well into its second major iteration;
it was more robust and functionally diverse, and provided
greater programmer support. While the project was initially
intended to target the OpenCL framework in order to benefit
from its portability, the greater maturity, flexibility, availability
and accessibility of CUDA at that time made it the most
appropriate choice. Due to the similarities between OpenCL
and CUDA kernel programs, however, translation between
these languages is relatively uncomplicated, and porting the
architecture is not a particularly complicated endeavor once
development is complete.

C. Architecture Components

The revised classification architecture consists of several
general components, each of which has been adapted to
address different elements described in the previous section. A
simple diagram showing the relationship between components,
as well as input and output files, is provided in Figure [3

Processing is divided between three layers, each operating
on distinct platforms. The first layer provides a user interface,
and was developed using C#. The major elements of this layer
include the capture visualiser, which provides functions for
exploring captures at a high level through temporal visualisa-
tion, and the program compiler, which converts high-level filter
code into optimised filter programs. These components serve
to provide useful and illustrative outputs and simplify program
creation respectively. The second layer, written in C++, is
either invoked through the C# interface or via the command
line, and contains data structures and methods optimised
for managing Input/Output (I/O) operations, packet buffering
and pre-processing, and filter execution management. This
layer contains the Capture Management component, which is
designed to reduce capture buffering time and generate packet
index files. Capture classification and packet processing is
facilitated within the third layer by a virtual machine written
in CUDA, which extends upon and significantly improves the
versatility and flexibility of the prototype classification engine.

D. Indexes, Results and Distilled Traces

The packet capture processing architecture presented de-
pends on an assortment of files to work efficiently. The primary

inputs include packet traces (see section [[I-A)), protocol library
files and high-level filter code.

During the course of packet processing, the architecture
produces additional files which are themselves inputs to the
system. These include index files, result files and distilled
traces. Packet index files are per-packet arrays which are used
to navigate a capture quickly, without requiring repeated re-
parsing. There are two distinct types of index file, which
are produced concurrently the first time a packet capture is
processed. The first is an absolute packet offset index, which
is simply an array of the 64-bit byte offsets of each packet in
the capture. The second index file type references the absolute
packet offset index file, and contains a per-second array of
packet indexes which correspond with the number of packets
that have arrived at each second in the capture. These files
are used to quickly navigate and visualise captures, and allow
for the rapid derivation of several useful metrics, including
the efficient calculation of packet rate, data rate and average
packet size over any arbitrary interval, without the need for
re-parsing capture files or storing large volumes of data in host
memory.

When packets are processed, they concurrently produce
individual filter results files for each filter specified. Each filter
result file is an array of bits, where each bit corresponds to
the truth value of that filter for a single packet. These result
files are extremely small, highly compressible and reusable. In
addition, they an be combined with ease through simple bit-
wise boolean operations. Packet results files are used as masks
for the visualisation component, and may additionally be used
to distill simplified or reduced traces. Distilled captures are
smaller, focused captures produced by parsing a capture, and
using both filter results and/or a temporal window to remove
packets which are of no interest. These reduced captures may
then be processed in other protocol analysers which do not
cope efficiently with large captures.

A detailed consideration of these components may be found
in [10].

E. Filtering Language

The GPU classification virtual machine executes filter
programs written in a high-level DSL, implemented using
ANTLR v3 (ANother Tool for Language Recognition) [S§]]
and C#. The DSL processes the specified filter program,
performs a number of optimisations, and emits the resultant
compiled filter as an array of commands encoded as integers
for execution on the GPU VM (Virtual Machine). The DSL
uses a syntax heavily inspired by C style languages, but
uses different keywords specific to packet processing, and is
intended to be flexible, powerful, and easy to read, modify and
write.

To simplify the process of creating filter programs, the
DSL supports the creation of protocols and protocol suites,
analogous to classes and namespaces in C++ respectively,
which encode high-level protocol libraries that describe the
structure of collections of protocols and their header fields.
They are intended to simplify the process of creating new



filters by providing named fields and filter functions which
may be referenced and reused. Protocol libraries operate using
a high-level syntax intended to allow flexible and extensible
processing of arbitrary protocol headers. These libraries are
used to generate optimised filter code, by allowing the filter
compiler to determine at compile time which fields need to
be evaluated, and which operations need to be performed, in
order to generate the results requested by the filter program.

Protocols are evaluated in a chain (similarly to the
PathFinder packet classifier [17]), and each protocol may spec-
ify which protocol is next in the chain based on the contents of
a protocol header field or register value. These links between
protocols are used to identify all possible paths between the
physical layer protocol indicated in the global header of the
packet trace, and any specified high-level protocol. Thus, a
program may simply query “TCP.SourcePort == 445, and
the compiler will determine all protocols that could potentially
precede TCP, and generate filters to detect and navigate them.
This greatly simplifies the specification of filters for protocols
at higher levels in the protocol stack, and will hopefully help
to reduce user error.

Protocols may contain any number of fields or filters,
which define the header structure and predefined filter methods
respectively. Fields describe the physical layout of protocols
in the packet data in terms of bitwise offsets and lengths,
and support optional and variable length field types through
DSL operations which use the syntax of if statements and
while loops respectively. Filters, in contrast, define a general
process, and are thus similar to methods in C based languages.
Filters can return boolean results or numeric values, either
as one or more arrays when invoked from the host, or as
single value when invoked from within a protocol executing
on the GPU VM. Filters can be used to define reusable filter
predicates, or to gather and transform packet header data for
use in visualisation or statistical analysis.

In addition, protocols may maintain a limited collection of
runtime variables (depending on the GPU being used), which
may be used to store and transform packet data for use in
calculations and when returning filter results. The allocation
and de-allocation of registers is automatically handled by
the compiler, which maintains a set of 30 or more numeric
registers and 64 boolean registers for each packet. Protocols
may also access and manipulate a selection of system registers
through special functions. Protocols provide a wealth of other
functionality and concepts, including protocol inheritance,
field value definitions and a range of mechanisms for con-
trolling the execution of the GPU VM from within protocol
code. Unfortunately, due to the complexity and scope of the
language and the space limitations of this paper, a detailed
discussion is not possible here, and will be deferred to a future
publication.

The main process in a filter program is the filter kernel,
which performs a similar function to that of a main method
in C++. Filter kernels specify which filters should be invoked,
which in tern determines which protocols need to be eval-
uated. Results can be retrieved and stored as a results file

from within this method. The compilation of a filter kernel
involves parsing and interpreting the structures defined in the
protocols it references so that these structures may be used
to construct minimalistic and efficient parallel GPU filters.
Processing involves parsing all expressions and variable based
operations first, and then parsing the field, protocol and suite
structure into optimised collections in memory. These ordered
collections can then be analysed, manipulated and pruned to
emit optimised filter code. Memory reads are optimised so that
packet data is loaded as few times as possible by overlapping
as many comparison operations and variable loads onto a
single data cache read as register space allows.

Once this process completes, the compiled filter kernel is
ready to be passed to the classification host process to begin
preparation for evaluation.

FE Capture Management

The capture management components of the architecture
are host side components which execute concurrently across
several threads, and provide the context and inputs necessary to
perform all filtering, indexing and distillation operations. The
capture management component is the primary I/O component,
and is responsible for reading and writing capture, index and
filter result files. It was developed using the C++ standard
library and the Tiny-thread API (Application Programming
Interface).

Due to the bandwidth bottleneck between long term storage
and host memory identified in Section the capture
management component’s performance heavily impacts the
applications overall performance. Care has thus been taken to
optimise the performance of this component as much as possi-
ble. Each file accessed by the capture management component
is read and buffered by a dedicated light-weight thread in
512KB chunks, before being processed by the primary buffer
management thread. This raw data is then cycled through in
order to concurrently generate packet index files and pass
chunks of packet data to the GPU virtual machine, or to the
distillation mechanism. Indexing and distillation is covered in
more detail in [10]].

In order to mitigate the bottleneck presented by the limited
performance of individual drives, the capture management
component supports a file mirroring mechanism which can
be used to reduce execution time at the expense of disk
space on independent drives. By specifying multiple identical
copies of a specific trace file located on independent disks, the
capture manager is able to coordinate and load balance partial
capture reads from multiple drives concurrently, increasing
the speed at which the capture can be buffered in host
memory, in a similar manner to that of a Redundant Array of
Independent Disk (RAID) configuration. In order to maintain
high capture read speeds across multiple drives, the average
read performance of each drive is monitored over a small
rolling window, and used to periodically adjust the read load
on each drive based on its recent performance. The period
between each adjustment is determined using an incremental
back-off process. This method ensures that poorly performing



disks do not inadvertently reduce rather than improve the
capture parsing speed, without requiring the micromanagement
of individual threads.

The file mirroring feature provides the speed benefits of a
RAID array without the need to create or maintain one, at the
expense of additional disk space.

G. Filtering Virtual Machine

The GPU classification process is handled by a specialised
parallel virtual machine which executes the filter kernel opera-
tions stored in an integer array in GPU constant memory over
segments of packet data collected by the capture manager.
The architecture of this VM is derived from the prototype
filtering kernels, which used a multistage filtering process,
where packet data was processed in two to three course-
grained parallel batches in rigid sequence. This course-grained
approach was sufficient for static predicates, which could be
pre-compiled without access to packet data, but lacked the
flexibility needed for more complex and variable protocols
where offsets cannot be predicted. The classification VM uses
a similar but significantly more flexible approach, relying on
fine grained commands (rather than course grained phases)
that can occur in any sequence any number of times. This is
made possible by the fact that, due to its specialised nature, the
virtual machine does not require a wide variety of operations,
and many simplifying assumptions can be made about how
processing can proceed.

On order to minimise redundant memory loads, the VM
interleaves the processing of multiple protocols and evaluates
them concurrently. The VM uses a 64 byte packet cache in
register memory to hold small chunks of data, which can
then be evaluated by multiple protocols simultaneously. Due
to the limited register space available to individual threads
on many GPUs, it may often not be possible to process
all protocols concurrently without spilling registers into de-
vice memory. If this happens to frequently used registers,
the overall performance of the classification process would
be significantly diminished by the high latency inherent in
reads from device memory [18]. To minimise this, the per-
thread register capacity of the graphics card and the register
demands of each protocol are used to split processing into a
multiple passes over the packet data (using a simple scheduling
algorithm) during compilation. This ensures that the register
demands of each batch of concurrent protocol evaluations
never exceed the capacity of the execution thread, and thus do
not incur significant performance penalties due to high latency.

One of the more considerable complications in processing
more flexible protocol specifications is managing thread di-
vergence efficiently. In the prototype algorithm, divergence
was eliminated entirely by processing every classification
predicated in every packet. Similarly, the approach taken in
the VM favours eliminating as much divergence as possible
by allowing for redundant processing, rather than trying to
forcibly block threads from executing irrelevant classifications,
in order to adhere as closely as possible to a SIMD processing
model. While each thread attempts to processes all protocols,
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Figure 6. Abstract memory layout of the packet classification virtual machine.

they are aware of what the current protocol in the packet they
are processing is, and use this to determine which operations
should be stored, and which should be discarded. In addition,
before a protocol is evaluated, each warp may optionally check
to ensure that at least one packet in the warp is associated with
that protocol using shared memory. If no packets identify with
that protocol, that protocol is skipped over by the warp, and
all results are set to zero for that protocol.

Each thread maintains a bank of registers used to store
system and user variables. Each thread maintains 64 1-bit
boolean registers, contained in two 32-bit integer registers, and
a variable number of 32-bit integer registers, depending on the
GPU being utilised. Rather than attempt to allocate and de-
allocate registers during execution, the compiler tracks register
usage by protocol, and arranges these integers within an array.
When a protocol moves out of scope and all its relevant data
has been stored, its registers are considered free, and other
protocols may use those offsets in the register array. Values
which exceed 32-bits are stored across multiple registers.

The virtual machine outputs individual per-packet arrays
for each boolean and numeric result returned to the host.
Classification results are stored in highly compact and easily
compressed single bit format, which may be used as index
masks to extract, visualise and distill packets matching partic-
ular filter results. By using a bit-based result format, multiple
filters can be combined through simple bitwise AND and OR
operations on the host, or by a GPU function. Figure [6] shows
a high-level overview of the memory architecture of the virtual
machine, and the flow of data from memory banks to and from
the main processing loop.

H. Visualisation

The user interface provides a unified set of tools for explor-
ing and analysing large long-term trace files, primarily through
controls and data structures which facilitate fast visualisation
of the underlying packet data. Visualisation depends heavily on
index files and filter results generated during packet processing
in order to allow for real time exploration of large captures
without exhausting host memory. The interface is implemented
in C# to facilitate rapid prototyping and development, with
visualisations constructed in OpenGL through the OpenTK C#
wrapper.

One of the primary problems associated with constructing
the visualisation and interaction components of the user inter-



face is the limited access to the underlying packet trace data,
which is composed of millions, if not billions, of arbitrarily
sized packets whose offsets must be determined by parsing
all prior packets sequentially in the trace. As the interface
is intended to visualise packet sets that could potentially span
terabytes, it is not feasible to store packet data in host memory
for analysis due to space constraints. Similarly, repeatedly
re-parsing multi-gigabyte capture files for each operation
performed in the interface is infeasible as it is far too time
consuming. Through the use of the index files generated by
the capture manager during capture parsing, and using a tree-
like data structure which incrementally caches packet metrics
over suitably sized intervals in the capture, the visualisation
component is capable of generating detailed overviews of
traffic data over any time interval in near-real time, without
consuming significant memory resources.

The capture visualisation component displays an overview
of the capture by using the per-packet and time-stamp in-
dex files to calculate the number of packets and amount of
data over various time intervals, which maybe expanded and
contracted in real time. Graph rendering is performed by
shader programs which execute on the GPU, and the resultant
images may be stored in the Portable Network Graphics (PNG)
format. Figure[7]shows two images generated by the visualiser,
showing both a capture wide and month-long segment
of visualised traffic volumes. In these images, the black
line indicates the number of packets arriving at that time,
while the gray area shows the volume of packet data arriving
at that time. As the amount of packet data arriving at any
given time will always significantly outweighs the number of
packets arriving, these graphs have been rescaled to similar
sizes. The visualiser supports multiple overlays on the same
graph, of various different types, in customisable render orders
and colours. In addition, the visualiser is capable of overlaying
the results of filters on capture overviews. The visualiser is
designed to support additional graph layouts, although these
have not been finalised at this time.

IV. ARCHITECTURE APPLICATIONS

The high-level architecture presented in this paper is pri-
marily intended to support and accelerate packet trace analysis,
and thus discussion has focused on this application exclusively.
In many respects, the GPU-based packet processor previously
discussed is ideally suited to offline trace-processing tasks,
as it is in essence a batch-processing approach. It allows
for packets to be buffered and processed collectively to best
exploit the SIMD nature of GPU co-processors, and depends
heavily on this collective processing to maintain its classifica-
tion throughput. This does not however preclude its application
in online classification processes.

The most significant complication in applying this classi-
fication and processing framework to live network traffic is
maintaining high throughput while simultaneously minimising
the latency between when a packet arrives and when it is
processed. This approach may not be viable in applications
where minimal latency is paramount, as it is difficult to avoid

deferring packets processing entirely. In applications which
can afford some latency, however, high-volume near-real-time
classification is possible by reducing the size of packet buffers
and forcing buffer processing if they are unfilled after a set
interval. When network volume is high, buffers will fill quickly
and may be processed rapidly, mitigating latency issues. When
network volume is low, packets are still guaranteed to arrive
and be processed by the device at the end of each set interval,
and maximum latency can be reduced by reducing this interval.

With support for live captures and relatively low latency
packet processing, the framework is applicable to a wide
range of problems, including intrusion detection systems and
network monitoring applications. As GPUs are relatively low
cost commodity hardware items which run in parallel with a
CPU, it is also potentially possible to create and deploy an
agent based distributed classification and monitoring sensor
network, using available GPGPU capable hosts. The architec-
ture, while packet centric, may in addition be expanded into
a more general records processing framework, to be used in
processing large log files and similar record sets.

V. SUMMARY

This paper has described an architecture which accelerates
the classification, processing and exploration of large packet
traces, extending prior research into GPU accelerated packet
classification. The described architecture uses four primary
components: the program compiler, the capture manager,
the GPU classification virtual machine and the visualiser.
The program compiler is used to generate optimised vir-
tual machine instructions using a high level domain-specific
language to specify protocol structure and filter operations.
The purpose of this component is to simplify the creation
of classification and analysis programs. The capture manager
collects and buffers packet data and generates index files to
accelerate visualisation and capture navigation. The capture
manager also implements a field mirroring function, which
allows multiple copies of capture across distinct drives to be
used to significantly accelerate the capture reading process.
The filtering virtual machine is used to process the captures
buffered by the capture manager using the virtual machine
instructions generated by the compiler. The virtual machine
can gather data, perform comparisons, execute functions and
process optional and variable length fields, returning results as
optimised per-packet data arrays. The visualiser uses the index
files generated by the capture buffer and the results generated
by the classification virtual machine to visualise the capture,
and thereby aid in the exploration of complex long term traces.

Together these components provide an efficient low-
overhead solution for exploring, analysing and extracting data
from extremely large trace files. Future work is expected to
focus on refining the process, and expanding analysis to a
distributed network of agents which can monitor traffic, issue
alerts, and provide remote visualisation and filtering of recent
traffic.



(a) 21st October 2010 to 9th May 2011 with 1 day intervals.
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(b) 1st December 2010 to 31st December 2010 with 1 hour intervals.

Figure 7. Visualisation showing comparative packet count (black line) and data volume (gray area) over time, at different levels of scale, for a large (43GB)
packet trace.
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