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Abstract—The use of file or volume encryption as a counter-
forensic technique, particularly when combined with stegano-
graphic mechanisms, depends on the ability to plausibly deny
the presence of such encrypted data. Establishing the likely
presence of encrypted data is hence highly desirable for forensic
investigations, particularly if an automated heuristic can be
devised. Similarly, forensic analysts must be able to identify
whether a volume has been sanitised by re-installation and
subsequent re-population with user data as otherwise significant
information such as slack space contents and files of interest will
be unavailable.

We claim that the current or previous existence of encrypted
volumes can be derived from studying file and volume entropy
characteristics based on knowledge of the development of volume
entropy over time. To validate our hypothesis, we have examined
several versions of the Microsoft Windows operating system
platform over a simulated installation life-cycle and established
file and volume entropy metrics. Similarly, using the same
mechanisms, we verified the hypothesis that the aging through
regular use of an installation is identifiable through entropy
fingerprint analysis.

The results obtained allow the rapid identification of several
volume-level operations including copying and wiping, but also
to detect anomalous slack space entropy indicative of the use of
encryption techniques. Similarly, entropy and randomness tests
have been devised which provide heuristics for the differenti-
ation of encrypted data from other high-entropy data such as
compressed media data.

Index Terms—File System Entropy, Installation Aging, En-
crypted File Systems

I. INTRODUCTION

The use of volume encryption by itself is insufficient to
keep data confidential or as a counter-forensic technique when
access to key material can be obtained or enforced. This
may occur e.g. pursuant to Part III of the UK Regulation of
Investigatory Powers Act 2000, requiring that a suspect supply
decrypted information and/or cryptographic keys to authorised
government representatives [1]. A skilled adversary will hence
aim to use a combination of cryptography and steganography
to achieve plausible deniability, whilst forensic investigators
must identify the presence of encrypted volumes for further

analysis as an in-depth manual inspection may not always be
feasible.

Entropy is a measure of the amount of information present
in a signal or file. A low entropy measurement implies a
well-ordered, well-structured signal whilst a high entropy
measurement indicates a signal with little apparent order or
structure. Encrypted information, however, must not show
discernible order or structure lest this make the encryption
vulnerable to various forms of statistical attack i.e. encrypted
data must have high entropy. Measurements of entropy and
randomness taken against a computer system should reveal
some information about the current state of that system and
the data stored on it even when file signature evidence has been
removed or replaced. The very presence of high entropy data
on a system may therefore prevent a suspect from plausibly
denying the presence of encrypted information. However, file
compression may result in similar high entropy encoding,
requiring a more careful analysis. We have hence sought
to characterise the relative entropy found for encrypted and
unencrypted (including compressed) data, but also the effects
of utilising different operating system versions as well as usage
patterns.

The research reported in this paper aimed to determine
experimentally the extent to which measures of entropy and
randomness can differentiate between encrypted and unen-
crypted data, different computer operating system versions
and configurations and typical and atypical computer usage. A
large number of Microsoft Windows workstation installations
are run through a simulated ageing process consisting of —

• applying patches and updates,
• installing and configuring applications, and
• creating and deleting large numbers of data files of known

types.

Forensic images of each workstation were captured at key
points during the ageing process and entropy and statistical
randomness measurements were taken from each image for
each storage volume and every installed file. In order to



verify the results obtained through simulation, a number of
images captured from production workstations are analysed
and compared.

The remainder of this paper is structured as follows: In
section II we briefly outline related work, followed by a
description of the experimental setup in section III used for the
subsequent analyses in sections IV and V for file and volume
analysis, respectively. We discuss key findings in section VI
before describing our conclusions and future work in section
VII.

II. RELATED WORK

Research into signature and content analysis forms the basis
of many file identification techniques, while work on multi-
media data in particular is seen as vital to digital forensics.
As this is a crucial pre-requisite for effective carving in the
presence of fragmented or deleted data, file system behaviour
allowing the effective grouping and identification of fragments
has been studied by a number of researchers; Holleboom and
Garcia investigated and performed experiments on information
retention in slack-space for micro-fragments of previous files
occupying the same clusters [2] with extensions by Blacher
for the csae of NTFS [3]; this also provides a further bound
on the entropy of such clusters that is to be expected over the
life-cycle of a frequently-reused storage medium.

A recent overview of the state of the art of multimedia
forensic investigations is given by Poisel and Tjoa [4] while
Ahmed et al. give examples of advanced methods used to
improve file identification [5]. Shannon’s analysis of ASCII
and entropy scoring building on his namesake’s work is of
particular interest [6], as is recent work by Wu et al. showing
how entropy and randomness testing can be used on encrypted
images [7]; the tool TCHunt by 16 Systems identifies True-
Crypt images specifically by combining a search for volume
(including sparse volumes) characteristics of TrueCrypt with
a simple entropy analysis.

Statistical analysis of file system clusters can yield in-
sights on file types even for isolated clusters as discussed
by Veenman [8]; for more specific file analyses, Lyda and
Hamrock describe an entropy-driven approach for detecting
encrypted malware, albeit relying only on block frequency
(binning) to obtain a relatively coarse metric [9]. For the
case of packed malware — which is beyond the scope of
the present paper — this may not be sufficient if counter-
forensic techniques are employed as recently described by
Ugarte-Pedrero et al. [10]. This is also closely related to the
need to predict the composition of file fragments; algorithms
for which have e.g. been studied by Calhoun and Coles [11]
with related approaches for classification described by Roussev
and Garfinkel [12].

III. EXPERIMENTAL SETUP

The focus of the present work is, without loss of gener-
ality, on the Microsoft Windows operating system platform.
Eight production disk images were captured from pre-existing
Microsoft Windows workstation installations using forensic

capture tools. A total of 7 variants of Microsoft Windows
7, Vista, and XP were installed in default VMware Fusion
3.1 virtual machines (VM) using the VMware “Easy Install”
wizard [13]. The Boot volume of each installation was anal-
ysed. In all cases, the file system used was NTFS, and the
cluster size set to eight 512 byte sectors. Except as noted,
all storage sectors were zeroed prior to installation of the
operating system instances. All images captured during this
project were captured from Windows installations after the
operating system had been shut down.

Microsoft Windows workstation installations are categorised
in this paper as either “Home” or “Business” depending upon
the usage pattern and the installed applications and data. A
common application suite — consisting of Microsoft Security
Essentials, Adobe Acrobat and Flash Player, and VMware
Tools — was installed on all virtual machine images. In
addition, Oracle Java and Microsoft Office were installed
on business VM images. Open Office, Mozilla Firefox and
Thunderbird, Google Picasa, Apple iTunes and the Steam
client application were installed on home virtual machine
images to reflect different usage patterns. All applications were
the latest versions as of June 2012. Document, music, picture,
video and archive files were added to each virtual machine
image; business virtual machine images contained relatively
more document files, whilst home virtual machine images
contained relatively more media files of different types.

A total of 47 VM images were created through a simulated
production life-cycle consisting of patching Windows, copying
and deleting data files on the Boot volume, and exercising the
installed applications. In ascending order of age, the simulated
life-cycle stages are referred to in this paper as “Initial”,
“Patched”, “Base”, and “Copyx” (where x is the number of
iterations). Captured images are referred to as “Actual” with
a number identifying the image and a letter suffix indicating
life-cycle stage where known (“a” is older than “b”, etc.).
So as to obtain images reflecting realistic longer-term use,
the authors relied on images obtained from volunteers for
validation. However, whilst all images and scripts utilised
in obtaining the results described here can be made freely
available on request, this does not apply to these validation
images for privacy reasons.

Encrypted data was obtained by creating TrueCrypt contain-
ers of various sizes using AES, Serpent and Twofish encryp-
tion algorithms and RIPEMD-160, SHA-512 and Whirlpool
hash algorithms; AES with RIPEMD-160 was the default
configuration. The same (weak) password was used in all
cases.

Data sectors were extracted from the volume images using
tools provided in The Sleuth Kit [14]. Entropy and randomness
calculations were performed on extracted data at the byte
level using the ent utility [15]. Where byte-level entropy
calculations are impractical or inappropriate, data compression
has been used as an analogue; all compression ratios reported
in this paper result from GZIP compression at the “-4”
compression level, utilising the Lempel-Ziv algorithm at its
core [16], albeit utilising the DEFLATE format [17].



7-Zip 7-Zip TrueCrypt TrueCrypt
File Cluster File Cluster

Count 237 1539 99 1024
Mean 7.999 7.955 8.000 7.955

Median 7.999 7.955 8.000 7.955
Min. 7.996 7.940 8.000 7.942
Max. 8.000 7.967 8.000 7.967

Table I
7-ZIP AND TRUECRYPT ENTROPY (BITS/BYTE)

7-Zip 7-Zip TrueCrypt TrueCrypt
File Cluster File Cluster

Mean 256.353 253.776 254.078 254.652
Median 258.247 253.375 254.073 253.750

Min. 190.077 182.750 204.452 185.500
Max. 324.218 340.375 322.160 326.500

Table II
7-ZIP/TRUECRYPT CHI-SQUARE STATISTICS

IV. FILE ANALYSIS

Entropy and randomness was measured at the byte-level for
a statistically significant number of test files of various types:
the mean and median number of files of each type analysed
were 716 and 255 respectively with the minimum number of
files of any one type being 11. Media and modern document
file formats were found to exhibit high mean entropy in the
range 7.270 to 7.981 bits/byte; most executables and older
document formats exhibited lower mean entropy in the range
3.822 to 5.989 bits/byte. This reflects the use of improved
compression algorithms in the newer file formats.

For file archives, entropy results reflect the relative perfor-
mance of the compression algorithms used: LZNT1 shows
the lowest mean entropy (947 files analysed, mean 7.558
bits/byte) and (G)ZIP and 7-Zip the highest mean entropy
(96 files, mean 7.981 and 237 files, mean 7.999 bits/byte
respectively). Encrypted TrueCrypt files consistently exhibit
the highest possible byte-level entropy. TrueCrypt and 7-Zip
clusters analysed in isolation, however, exhibit very similar
(lower) entropy to each other (see Table I).
χ-square, byte mean value, Monte Carlo π, and serial

correlation values were calculated for all tested files. The χ-
square test indicated that, with few exceptions, only 7-Zip and
TrueCrypt files exhibit uniform randomness at the byte level.
At the file level it was also noted that TrueCrypt containers
consistently return χ-square results slightly closer to uniform
randomness than the tested archive files; this does not apply
when TrueCrypt containers are viewed at the cluster level (see
Table II).

Entropy and randomness values were also calculated for
Windows system and meta-data files at various points in
the (simulated) Windows life-cycle. No significant results
were observed for these files. Entropy-frequency plots of
the complete set of files forming each Microsoft operating
system were found to be quite different to a similar plot of a
recent Linux distribution. Different versions of Windows were
observed to have fairly distinct entropy-frequency plots but

these distinctions soon disappeared as data files were added to
each installation (although it was still possible to differentiate
between Windows and Linux instances).

A. Media File Analysis

Specific analyses were conducted for a number of file
types including text, formatted text (XML, PDF), document
(different Microsoft Office formats as well as Open Document
format files), and media (image, video, and audio) data. Of
particular interest in the context of the present paper are
compressed file formats, which are characteristic of media
data, but also more recent modern file formats noted above.
Here, we have analysed basic descriptive statistics for file
samples

MP3 M4A
Count 6465 1088

Mean Entropy 7.967 7.981
Standard Deviation 0.041 0.011

Sample Variance 0.002 0.000
Kurtosis 334.617 80.982

Skewness -15.283 -7.736
Minimum 6.710 7.822
Maximum 7.995 7.994

Confidence Level(95%) 0.001 0.001

Table III
ENTROPY - DESCRIPTIVE STATISTICS (MUSIC FILES)

Table III shows that the compressed MP3 and M4A music
file formats exhibit very high mean levels of entropy (similar to
the entropy levels exhibited by compressed image file formats).
Music file formats similarly also exhibit very little variance
or deviation from their mean entropy value. For the music
file types tested, χ-square randomness indicators have values
well above values expected for random data (see Table IV).
We can see easily that the tested music file formats do not
exhibit randomness at the byte level; this is to be expected
given the internal structure of the formats used, but yields
a usable and efficient distinguishing feature. It is clearly
necessary to perform this type of analysis as can be seen from
the compression levels found in common file types; figure 1
provides a summary of the mean entropy for file types; this
distribution is notably different once entropy is studied at the
block or cluster level.

V. VOLUME ANALYSIS

Storage clusters within the Windows Boot volume are
flagged as either allocated or unallocated by the NTFS MFT
$BITMAP attribute. Allocated clusters are known to contain
current, live data whilst unallocated clusters may contain old,
disused data. Sequence numbers within the NTFS MFT are
incremented as MFT file and directory entries are (re)allocated
and give an indication of the likelihood that unallocated and
slack space will still contain the initial zeroed values. For the
images described in this paper, maximum sequence numbers
in the ranges 32 to 13015 and 11775 to 63655 were observed
for the VM and production images, respectively.



Figure 1. Overall File Mean Entropy (by Type). At least 1000 files per
format were analysed.

Figure 2. Boot Volume Allocated Space (GZIP)

Volume analysis was performed across the entire Boot
volume. The MFT zone — a proportion of an NTFS volume
reserved for MFT entries — is not considered in this analysis.
When considering Windows XP volumes that have had more
than 87.5% of their space allocated, it should be borne in mind
that such volumes will have relatively fewer zeroed clusters
than other XP volumes due to files having been allocated
in the large MFT zone [18]. Figure 2 illustrates how the
overall compressibility of allocated space on the Windows
Boot volume decreases over time on all tested operating
systems (i.e. entropy increases). The compressibility curve for
all tested Windows versions begins to flatten in the 25–35%
range as high entropy data files are added to the volume over
time.

Overall compressibility of unallocated space on the Win-
dows Boot volume decreases over time on all tested oper-
ating systems (i.e. entropy increases), as may be expected.
Compressibility of unallocated space remains very high until
used sectors containing high entropy data begin to be deal-
located. The VM images show a smooth, gradual increase
in the entropy of unallocated space as the Windows Boot

Figure 3. Boot Volume Compressibility (XP Home)

Chi-Square
MP3 9984.491
M4A 53119.803

Table IV
MINIMUM CHI-SQUARE (MUSIC FILES)

volume ages. No such progression was seen on production
images, however (see figure 3). The results for the “Actual 2”
production Windows XP image demonstrate that it is possible
for the entropy of unallocated space on a file system to be
both lower or higher than allocated space entropy depending
upon the usage history of the underlying media.

For the “Actual 2” image shown in figure 3, the allocated
clusters from original media “Actual 2a” were copied onto
media “Actual 2b” that had previously been used almost
exlusively for media file storage. The file system was then sub-
sequently copied onto new, zeroed media “Actual 2c”. While
both allocated and slack space compression ratios remained
relatively constant during these relocations, compression ratios
for unallocated space varied dramatically depending upon the
original content of the new media.

The Microsoft NTFS file system stores data in fixed size
allocation units called clusters. Files themselves, however, are
seldom exact multiples of the cluster size and hence a certain
proportion of the last cluster allocated to a file is not used
and data could potentially be hidden there [19]. The unused
space in a cluster is known as file slack. It is well-known that
Microsoft Windows will fill unused space in the last sector
into which data is written with zeros (“RAM slack”), but that
it will not write data into any completely unused sectors in
the cluster [14], [20].

Each file will therefore have one potentially lower entropy
sector containing RAM slack plus potentially several further
sectors which retain the data from whatever previously oc-
cupied them. In the case of a clean (zeroed) disk, therefore,
slack space should overall have very low entropy because most
of the sectors allocated to file slack are zeroed. Over time,
however, as files are deleted and sectors are reallocated then



the overall entropy of slack space should increase (although
it should always remain comparatively low due to the zeroed
RAM slack).

Figure 4. Mean Slack Space per File

Figure 4 shows that the mean slack space per file remains
relatively constant over the life cycle of the Microsoft Win-
dows operating system and applications, and that there is no
significant difference in the mean value between versions of
Windows investigated here. For all tested images the mean
slack space per file on the Boot volume is well above the
2048 byte value that we would expect for purely random usage
of 4096 byte clusters. This is potentially caused by Windows
installations containing many files that are much smaller than
half a cluster in size but may be an area worthy of further
investigation.

Figure 5 shows that in the early part of the Windows life-
cycle, slack space entropy — on initially zeroed storage media
— is very low and then begins to gradually increase as the
Windows installation ages and clusters are reallocated. The
lowest slack space compression ratios were observed on the
production Windows images and varied between 65% and
81%. In an attempt to identify an upper bound for slack
space entropy, a boot volume was initialised to pseudo-random
values (using a Unix “urandom” device) before Windows was
installed; a slack space compression ratio of 57% was observed
in this (approximate worst) case. We note that at the time of
writing no actual volumes that had been in use for sufficiently
long existed for Microsoft Windows 7, hence figure 5 only
shows these data points for the case of Microsoft Windows
XP volumes.

The “aging” of installation also is a potentially relevant
element of information in that it not only affects the entropy
of different elements of the volume such as overwritten but
subsequently deleted or otherwise orphaned storage, but also
serving as an indicator of an attempt to remove potential
evidence by wiping a file system and subsequently replacing
files; this may e.g. be the case if a system that had previously
been infected with malware is replaced with a known good
instance prior to the analysis taking place. Figure 6 shows

Figure 5. Slack Space Compressibility

Figure 6. Allocation Unit Entropy (New Installation)

the initial entropy per allocation units (normalised as bits per
byte) plotted against the fraction of the volume occupied by
allocation units (files) of this entropy.

Figure 7 then shows the changes in entropy per allocation
unit after seven aging iterations approximating 2 years of regu-
lar desktop use. Even without a detailed statistical analysis, the
“aging” effect is clearly visible. However, whilst one would
naı̈vely expect the entropy distribution to shift rightwardd, this
is not necessarily the case.

We note that figure 6 also contains a plot for the initial
distribution for a Linux installation; resource limitations did
not allow analogous experiments to be conducted for Linux, so
only results for different Windows variants are reported here.

VI. ANALYSIS

A combination of entropy and randomness testing appears
to be capable of detecting encrypted files from file content
alone. Encrypted and highly compressed data prove to be
effectively indistinguishable when only small amounts of each
are analysed; a size boundary for reliable differentiation is not
established in this paper.



Figure 7. Allocation Unit Entropy (7 Generations of Use, Approx. 2 Years)

Frequency analysis of the entropy of files on a Boot volume
can give an indication about which type of operating system
is installed. The system files located on a Windows Boot
volume have relatively low entropy. High overall entropy in
both allocated and unallocated space therefore indicates the
presence of significant quantities of (high entropy) user data
on the volume.

Allocated space compression ratios of around 30% appear
to be typical for production Windows Boot volumes that have
been used for some time; ratios significantly below this can be
considered anomalous. Unallocated space on a Windows Boot
volume does not appear to have a “typical” entropy value.
An unallocated space entropy value significantly lower than
the typical allocated space entropy value may merit further
investigation.

Unallocated space with very low entropy indicates a recently
created volume or one that has been deliberated wiped. When
data is copied between volumes, it is likely that slack space
will be transferred but unlikely that unallocated space will be
transferred; this may lead to a mismatch between slack space
entropy and unallocated space entropy from which we might
infer a transfer or volume sanitisation.

Slack space compression of 65-75% is typical for a Win-
dows installation that has been used for some time. Slack space
compression ratios below 60% are unlikely to occur in normal
Windows operation and would merit further investigation.

VII. CONCLUSIONS

The results presented in this paper demonstrate that entropy
and randomness measurements may be able to differentiate
between encrypted and unencrypted data files with a reason-
able degree of confidence, permitting automation. These same
measurements may also help identify atypical Windows usage
such as volume copies, volume wipes and unusually high
entropy slack space. A strong result obtained in the analysis is
the correlation of the compression ratio for slack space with
the age of an installation, as any anomaly is likely to warrant
further investigation. For the case of files we have found that
— provided sufficiently large files are available for analysis

— a combination of entropy and randomness tests will suffice
to identify characteristics of encrypted data without having to
rely on meta-data.

An adversary aware of these findings may attempt to cast
doubt upon these measurements by highlighting that similar
results can be obtained when analysing highly compressed
files. When small amounts of data are involved then this
can be an effective defence because entropy and randomness
tests struggle to reliably differentiate encrypted and highly
compressed data. For larger amounts of data, however, an
adversary may be forced to use alternative defences such
as filling unallocated storage with high entropy data and
monitoring slack space entropy. Such countermeasures may
themselves be identified as atypical usage which trigger further
investigation.

Future work will seek to study the applicability of the results
reported here to other types of (local) file systems and newer
editions of the operating systems studied. We are particularly
interested in analysing the characteristics of newer, log-based
file systems as this has thus far not been studied to the best
of our knowledge.

A further natural extension of the work described here
is also the development of counter-forensic mechanisms that
either avoid yielding tell-tale signatures identified, or to pro-
vide extensive decoys to increase the work-load and extent of
manual investigation required as well as creating a plausible
deniability scenario. Attention has been paid in the present
work to facilitate automation of measurements as far as possi-
ble; it appears to be highly desirable to repeat measurements
particularly at the file analysis level regularly as changes in
file formats and e.g. encoders in case of multimedia files may
change over time, skewing results.

The data and mechanisms used in generating the results
described here are freely available from the authors subject to
licensing conditions for the software used in the image files
themselves except where privacy restrictions do not permit the
release of personally identifiable information.
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