
On a Domain Block Based Mechanism to Mitigate
DoS Attacks on Shared Caches in Asymmetric

Multiprocessing Multi Operating Systems
Pierre Schnarz∗†, Clemens Fischer∗†, Joachim Wietzke∗, Ingo Stengel†

∗University of Applied Sciences Darmstadt
Department of Computer Science

Darmstadt, Germany
{pierre.schnarz, clemens.fischer, joachim.wietzke}@h-da.de

†Centre for Security, Communications and Network Research
Plymouth, United Kingdom

{pierre.schnarz, clemens.fischer, ingo.stengel}@plymouth.ac.uk

Abstract—Asymmetric multiprocessing (AMP) based multi-
OSs are going to be established in future to enable parallel
execution of different functionalities while fulfilling require-
ments for real-time, reliability, trustworthiness and security.
Especially for in-car multimedia systems, also known as In-
Vehicle Infotainment (IVI) systems, the composition of different
OS-types onto a system-on-chip (SoC) offers a wide variety
of advantages in embedded system development. However, the
asymmetric paradigm, which implies the division and assignment
of every hardware resource to OS-domains, is not applicable to
every part of a system-on-chip (SoC). Caches are often shared
between multiple processors on multi processor SoCs (MP-SoC).
According to their association to the main memory, OSs running
on the processor cores are naturally vulnerable to DoS attacks.
An adversary who has compromised one of the OS-domains is
able to attack an arbitrary memory location of a co-OS-domain.
This introduces performance degradations on victim’s memory
accesses. In this work a method is proposed which prohibits
the surface for interference, introduced by the association of
cache and main memory. Therefore, the contribution of this
article is twofold. It introduces an attack vector, by deriving
an algorithm from the cache way associativity, to affect the co-
OSs running on the same platform. Using this vector it is shown
that the mapping of contiguous memory blocks intensifies the
effect. Subsequently, a memory mapping method is proposed
which mitigates the interference effects of cache coherence. The
approach is evaluated by a proof-of-concept implementation,
which illustrates the performance impact of the attack and the
countermeasure, respectively. The method enables a more reliable
implementation of AMP-based multi-OSs on MP-SoCs using
shared caches without the need to modify the hardware layout.

I. INTRODUCTION

Multi-operating systems (multi-OS) are going to be estab-
lished in future [1]. Especially for in-car multimedia systems,
also known as In-Vehicle Infotainment (IVI) systems, the
composition of different OS-types onto a System-on-Chip
(SoC) offers a wide variety of advantages in embedded system
development.

The development of systems and software in the automotive
environment implies special requirements and challenges [2].

In particular, one of the challenges is to integrate the wide-
spread functions onto one single head unit [3]. Furthermore,
tightly network-coupled (cloud) applications, such as social
networks will gain increased entry into that environment. The
utilization of multiple OSs on one platform provides the oppor-
tunity of gaining advantage of their properties. An example is
the running of a real-time OS parallel to a mobile OS or a gen-
eral purpose OS. The loosely-coupled component structure of
SoCs offers the possibility to implement a multi-OS following
the asynchronous multiprocessing (AMP) paradigm rather than
following the classical virtualization schemes implemented in
commodity desktop architectures. The AMP paradigm implies
the total splitting of every resource in the system. Specialized
hardware extensions introduced with current RISC processor
architectures such as the ARMv7 [4] enable the assignment of
devices and resources of the SoC to single OSs.

A. Problem Statement

Caches are often shared between multiple processors
on multi processor SoCs (MP-SoC). Thus, the asymmetric
paradigm is not yet applicable to every part of a system-on-
chip (SoC). The technology implies the division and assign-
ment of every hardware resource to OS-domains. According to
their fixed association to the main memory, OSs running on
the processor cores are naturally vulnerable to DoS attacks.
Generally this enables an adversary who has compromised
one of the OS-domains to attack an arbitrary memory lo-
cation of a co-OS-domain. This could introduce significant
performance degradation on victim’s memory accesses. The
proposed memory mapping technique prohibits the surface of
interference. It has been shown that the mapping of contiguous
memory blocks intensifies the effect. The method enables a
more reliable implementation of AMP-based multi-OSs on
MP-SoCs using shared caches without the need to modify the
hardware layout.

978-1-4799-3383-9/14/$31.00 ©2014 IEEE

B. Related Work

The technique of interfering with a co-OS-domain is often
referenced to as cache thrashing. Similar approaches to imple-
ment multi-OS are shown in [5], [6], [7] and [8]. However, the
approaches focus on IA-32 multicore architectures which are
used for desktop computers. The difference to the architecture
proposed in this work lies in the design paradigm, protocols
and hardware compilation, which can not simply be transferred
to SoC architectures. The intended solution to manage the
cache allocation indirectly is introduced in [9], [10] and [11].
The authors propose the solution of coloring caches in order to
avoid interference between applications. They also deal with
the problem of the dynamic allocation and assignment of cache
colors to applications. The solutions are implemented into the
memory allocation mechanism on OS level.
The approach proposed in this article differs substantially from
this related work. In the case of AMP multi-OS, the memory
segmentation must be enforced on system level to have the
capacity of protecting the configuration. Furthermore, since
the system setup is statically defined, no dynamic allocation
page coloring algorithms can be implemented.

C. Methodology

The research methodology of this article is twofold. It
introduces an attack vector, by deriving an algorithm from the
cache coherence protocol, to affect the co-OSs running on the
same platform. Using this vector, it has been shown that the
mapping of contiguous memory blocks intensifies the effect.
Subsequently, a memory mapping method is proposed which
modifies the association of the cache to the main memory. The
approach is evaluated by a proof-of-concept implementation
which illustrates the performance impact of the attack and the
countermeasure, respectively.

D. Structure

In Section VI a method is proposed which addresses the
possible surface for interference. Furthermore, implementation
issues for the solution are given in Section VI-B. To verify
the concept, an attack vector is introduced in Section V,
which quantifies the impact shown with an experimental setup
(Section VII). All measurement results are given in Section
VIII. The remainder of this article is organized as follows:
In Section II the Multi-OS environment and it’s practical
realization is introduced. In Section III the organization of
the memory is examined. Lastly, a conclusion is presented in
IX.

II. AMP MULTI OPERATING SYSTEMS

Generally, in multi-OSs two or more OSs that run concur-
rently on a single hardware platform are assumed. According
to their capabilities, they can, but are not obliged to, be
of different types. In this work, OSs are divided into three
categories: real-time, general purpose and mobile. Each OS
maintains its own memory as well as the physical devices
provided by the hardware platform. The combination of OS,
memory and devices builds an independent and self-organizing

Fig. 1. Multi-OS composition and resource assignment

OS-domain. Figure 1 shows a semantic system overview.
The difference to other multi-OS approaches (compare the re-
lated work in I-B) is that OS-domains are statically bound to a
processing unit, which is usually one of the central processing
units (CPU) or CPU-cores of the hardware platform. This is
led by the intention of achieving a static system configuration.
It is not intended to expand domains in the main memory or to
reorganize the device assignments during runtime. During the
boot phase all necessary initializations and configurations are
set up. In comparison to classical virtualization examples, this
approach avoids interfaces to manage the configuration once
the system is running. The intention is to minimise the attack
surface.
This proposed approach is based on asynchronous multi
processing. AMP systems are not new in certain domains.
Primarily an AMP system provides non-symmetric access to
hardware. The term asymmetry refers to the separation of
hardware resources core-by-core in the system. Each core has
access to and works on a different partition of the main-
memory and hardware devices. To maintain and handle the
different core partitions and their applications, each partition
must run an OS. In this way it is also possible to run
different OSs on an AMP multicore system. This approach for
encapsulation is hardware-based and requires that fundamental
hardware functions to be adapted or configured to run multiple
OSs. The approach is contrary to single multiprocessing (SMP)
which runs a single OS on all CPU-cores and maintains all
hardware resources.

A. System on Chip Structure

SoC is an integrated circuit that combines all components of
a computing platform or other electronic systems into a single
chip. Designing SoCs is a very demanding area in embedded
system development. The platform will be constructed for
their intended environment. The architecture of the system is
generally tailored to its application rather than being general-
purpose. This means there is usually no common structure for
such platforms. Nevertheless, most SoCs are developed from
pre-qualified hardware blocks (compare [12]). These blocks
are connected through an on-chip network, often referred to
as system-bus. In Figure 2 a generalized structure for SoCs is
presented. For this work, the focus is set to a single subsystem

Fig. 2. Generalized SoC-structure

Fig. 3. First and second stage MMUs in the CPU centric memory
management

which implements CPUs. Furthermore, the CPU-subsystem’s
connection to the main memory is considered.

B. AMP Multi-OS Realization

This section will examine issues associated with realizeing
an AMP-based multi-OS. In this work hardware architec-
tures are considered which use memory maps for hardware
accesses (memory mapped i/o). Each device connected to
the common shared bus (CSB) is reachable by a statically
defined physical address. These addresses are bundled in
an i/o-address space or configuration address space if there
are any configuration-registers of the device. Processors map
those physical addresses to their virtual address space using
a memory management unit (MMU). The MMU itself uses
a translation table (TT) to match and redirect accesses to
peripherals connected to the CSB. The translation table itself
either resides somewhere in the physical memory space or
is implemented into the MMU hardware. The whole system
configuration is set during the boot phase within the privileged
hypervisor mode. Figure 3 shows the CPU subsystem.

C. Centralized Memory Mapping and Peripheral Assignment

The segmentation of the addressable space as well as the
assignment of certain resources, peripherals or devices is an
integral part necessary for the creation of an AMP multi-OS.
In this context, assignment means the device is only accessible
by a single, defined OS-domain. As mentioned, the assignment
will be enforced by the second stage MMU. To bind a resource
to an OS-domain, it must provide an interface (configuration
registers) in a dedicated address area (configuration-space).
This includes clock assignments, MMU activation and signals,
etc. In order to assign a resource to an OS-domain all of the
configuration-registers will be mapped to its address space.
The example in Figure 4 shows two OS-domains and two

Fig. 4. Example for a system memory map

devices. Based on the full addressable space, each device or
memory partition is assigned to a domain. As an example, if
4GB of main memory is given, the main memory could be
mapped from the physical address 0x80000000 to 0xbfffffff.
If an address space is shared the associated addresses are
multiply assigned.

D. Address Spaces

As a result of the two staged address translations, the system
deals with three different address space types.

• Virtual address space (VA): This space is typically
maintained by the OS-domain. The addresses used in this
space are referred to as virtual addresses. An address used
in an instruction, as a data or instruction address, is a VA
[4] and has a space of up to 32 bits.

• Intermediate physical address space (IPA): The IPA is
the output of the stage 1 translation and the input of the
second stage. If no stage 2 translation takes place, the
IPA is the same as the physical address.

• Physical address space (PA): The address of a location
in the memory map, which is an output address from the
processor to the memory system.

The translation process works as follows:

(V A)stage1
−−−−→

(IPA)stage2
−−−−→

(PA) (1)

E. Translation Tables

The MMU utilizes a translation table to convert an input
address to a corresponding output address. Depending on the
implementation, these translation tables are located in the PA
address space of the SoC. In order to manage a huge address
space, the translation tables are divided into different levels.

Typically, there are three translation Levels. According to
the ARM reference [4] Level 1 maps 1GiB blocks, Level 2
2MiB blocks and Level 3 4KiB pages respectively. The input
address, particularly the IPA, indexes the position in the table.
Each entry points either to a memory region or to the next
corresponding translation table level.

III. MEMORY ORGANIZATION

This work develops general models. Nevertheless, the or-
ganization of memory, cache subsystems, their protocols and
hierarchy are based on the ARMv7 architecture specification
[4]. This specification is the foundation for a significant
amount of SoC platforms.

A. Caches

The general intention of the integration of caches to pro-
cessors is to speed up access to frequently used memory.
The memory in computing systems is hierarchically orga-
nized [13]. Regardless of the highest orders, which are the
processor’s registers, there are one or more levels of cache,
which are denoted as L1, L2, etc. In multi processor (MP)
systems some levels are private to the processor and some are
shared between multiple processors. In SMP based systems
a coherence protocol maintains the synchronization of shared
data. Caches expand from the lower to the higher levels. The
smallest addressable entity within a cache is a cache-line (CL),
which has a fixed CL size, such as 64 Byte.
The last level cache (LLC) before the main memory often has
an associativity scheme. The scheme describes which CL in
main memory, the memory line (ML), is loaded to a specific
location in the cache. The location where a ML is loaded to,
is denoted as CL ID. The associativity between the LLC can
be fully associative or could be organized into associativity-
cache-way sets. Fully associative means each CL can be
loaded to all possible CL ID positions in the LLC. In most
cases caches are divided into way-sets (WS). Thus, a specific
ML is associated with a specific WS in cache. If a WS has a
size of 8, it is called an 8-way-set associative cache. When a
ML is loaded to a CL into the WS, a replacement algorithm
determines the specific location. Upon implementation, this
could be done by a least recently used algorithm or could be
totally randomized. The CL that gets replaced, will be written
back to the main memory. The number of WSs in the cache
can be calculated by:

WScount =
cachesize

(CLsize ∗WSassoc.)
(2)

B. Addressing Scheme

Addressing is the fundamental part of memory accesses.
Usually the smallest addressable entities in computer systems
are 32Bit. As a result, a single CL contains 16 addressable
locations. The data or instructions loaded into the cache can
be logically/virtually indexed or physically indexed. In case
of physically indexed caches the PA of a memory location
identifies CSs in the cache system. As a result, VA or IPAs
have to be translated through the MMUs before the data can be

TABLE I
CACHING TERMINOLOGY

Sign Description

WS Way Set

CL Cache Line

ML Memory Line

CLSize Size of single cache line

MLSize Size of single memory line

WSID A specific WS

DBSize Size of a Domain Block

WSCount Amount of way sets

CLCount Amount of CLs

loaded into the cache. If processor accesses a certain memory
location on main memory, the VA will be translated into a PA.
In equation 3 how to determine a specific WS in cache to a
given PA is shown.

WSID =
PA

CLsize
mod WScount (3)

IV. SECURITY THREAT

The identified security threat is characteristic to this par-
ticular environment. In this area, attackers are assumed to be
knowledgeable insiders and having access to non disclosure
documentation of the hardware platform. Furthermore, it is
assumed to deal with OS-level attacks. It is feasible to assume
that an adversary might compromise and control an OS-
domain. This is reasonable due to the attack surface of highly
Internet-coupled mobile-OSs.
As a result, the adversary aims for vulnerabilities at system-
level. Despite privilege escalation attacks (horizontal or verti-
cal) this article focuses on DoS-attack-surfaces in the shared
LLC. The attacker’s aim is to overcommit the cache from
its compromised OS side in order to degrade the memory
access performance on the target’s side. According to the cache
associativity the attacker is able to aim for a memory access to
a specific PA in the system. This access can be read or write.
As an example, it is feasible for adversaries to aim at a co-
OS-domain which computes the cluster device (speedometer)
for the driver of a vehicle. The target would need to fetch
data from the memory in a strict timing order. If the memory
access is delayed by the attacker, the display of the data could
be significantly delayed as well. This has an impact on the
reliability and availability of the target system.

V. DENIAL-OF-SERVICE ATTACK VECTOR

In this section, the method of how to achieve interference
between the two co-OS-domains will be described. Further-
more, we show how to implement the method. For our
consideration, we have assumed a two-leveled cache hierarchy
and 16 WS associativity of the L2 cache to the main memory.

A. Method

In order to introduce performance impact on co-OS-
domains, an attack vector is examined which aims to

Fig. 5. Exploiting the cache way-set association

overcommit a certain WS in the LLC. The memory mapping
introduced in Section II-C shows that the memory partitions
are assigned in two big consecutive blocks to the OS-
domains, which are denoted as Memory Partition 0 and
Memory Partition 1 respectively.

As shown in Figure 5, each ML in the main memory is
assigned to a specific WS in the LLC. Since the main memory
is bigger than the L2 cache, the pattern repeats every time
WScount has been reached. The method to fill a specific WS
in the cache is to compute WS ID according to the following
equation:

Blocksize = WScount ∗ CLsize (4)

Algorithm 1 Fill specified WS
Require: PA ≥ 0;Stepsize > 0

NextPA⇐ PA
for i = 0; i ≤WSsize; i++ do
AccessNextPA
NextPA⇐ NextPA+Blocksize

end for

If the attacker aims to interfere with the victim, he just has
to use the same WSs as the victim. Aiming for a specific
WS, and by doing this very frequently the victim’s memory
accesses to this WS can be significantly delayed. According
to the replacement strategy in the WSs, this effect can be
deterministically predicted in case of least recently used (LRU)
or statistically measured in case of random replacement.

VI. COUNTERMEASURE

The attack vector shows that it is possible to interfere
with an co-OS domain by attacking specific WSs. Since this
would lead to unpredictable memory access execution delays,
a method is introduced to prohibit this effect. The cache covers
the whole main memory. Attributes like the associativity
commonly cannot be changed in the system. Hence, a method
is required which is applicable without the introduction of
architectural hardware changes.

A. Domain Block Memory Mapping

The general strategy for the countermeasure is to invert
the DoS method. The method assigns WS in the cache to
OS-domains. This is achieved by the introduction of Domain
Blocks (DB). The DBs are later mapped to the particular OS-
domains. A DB is a memory region that is assigned to a
specified region of a set of WSs in LLC. In Figure 6 the
method is depicted. The example shows a DB mapping for
two memory partitions. As a result, there are two different
”colors” for DBs in this case. A single DB consists of a set of
MLs. The DBs describe an alternating pattern within the main
memory. In the example, a cache with 2048 WS is assumed.
To split the cache literally into two halves, a DB consists of
1024 ML. Generally, the size of a DB is calculated through:

DBsize =
WScount

Domains
∗ CLsize (5)

The DBs will be mapped to the OS-domains using the
second stage MMU. The mappings in the Level 3 descriptors
are generated as follows: The input address space, represented
by the IPA, must be consecutive for a proper operation of the
OS. The output addresses (PA) are generated with regard to
the proposed pattern. Since each entry in the TT describes
a 4096 Byte page in the main memory, each page contains
64 MLs with a size of 64 Byte. To contain 1024 MLs, 16
pages form a single DB. The mappings are generated using
the Algorithm 2. The PA space for the main memory starts
at address 0x80000000. For OS − domain1 IPA space starts
at 0x80000000 and for OS − domain2 at 0xA0000000. The
algorithm iterates through the whole address space of the main
memory.

Algorithm 2 Generate Level 3 TT
IPA1 ⇐ 0x80000000; IPA2 ⇐ 0xA0000000
PA1 ⇐ 0x80000000, PA2 ⇐ 0x80010000
Pagesize⇐ 0x1000
for j = 0; j ≤MainMemoroysize; j+ = DBsize do

for i = 0; i ≤ 16; i+ = Pagesize do
IPA[1,2] ⇔ IPA[1,2]+ = Pagesize
PA[1,2] ⇔ PA[1,2]+ = Pagesize

end for
IPA[1,2] ⇔ IPA[1,2]+ = Pagesize
PA[1,2] ⇔ PA[1,2]+ = DBsize ∗ 2

end for

The maximum number of OS-domains, respectively CPUs,
supported by this method is dependent on the cache size,
CLSize and on the minimum pagesize supported by the TT.
Assuming an ARMv7 architecture the minimum pagesize is
set to 4KiB and the CLSize is 64 Byte.

Domains = WSCount/
Pagesize

CLSize
(6)

In the example configuration, 32 OS-domains or CPUs would
be supported.

Fig. 6. The principle of cache domain blocks

There are multiple possibilities to map these pages. For
example, in the introduced algorithm, the DBs are optimized
to the maximum size. To some extent, this avoids a high
fragmentation of the PA memory.

B. Implementation Issues

In the results we show that the proposed mapping scheme is
applicable to prohibit DoS attacks in shared caches. However,
the implementation of the scheme involves certain challenges
in system development. As mentioned previously, the system
setup is statically defined and initialized during bootup. To
implement the proposed mapping, the initialization of the
second stage MMU must be completed before the OS images
or configuration files such as Device Tree Blobs are loaded into
the main memory. This is problematic, since the second stage
MMU is commonly initialized using an identity mapping,
which means there is no remapping of memory pages. Since,
we divide the main memory into DBs, this scheme has to be
considered on loading the OS-images. Basically the images
are bigger than the 64KiB DBs, so they have to be loaded
with respect to that pattern.

Furthermore, the proposed memory mapping scheme de-
mands a special treatment of direct memory accesses of other
subsystems connected to the common system interconnect.
Direct memory accesses are preformed on consecutive PA
memory areas. In order to use DMA capabilities of certain
resources, the maximum transfer size needs to be limited and
aligned to the DBs. Otherwise, the IPA address space needs to
be established to the DMA capable resource. This requires that
the DMA device is aware of the mapping scheme, and is able
to translate the IPA addresses which are communicated by the
OS-domains into the real PA residing in the main memory.

C. Cost Estimation

The introduction of the proposed memory mapping will
introduces overhead by retrieving the mapping entries from the
MMU translation tables. This might be caused by additional
table walks. A full translation table lookup is called a transla-
tion table walk. As mentioned previously, the MMU translation
tables are concatenated into different levels, where each level
describes a finer-grained amount of data, from the higher
to the lower level. Using a consecutive memory mapping

the granularity of Level 2 block descriptors are sufficient to
produce a proper system mapping. According to the domain
block mapping, Level 3 descriptors which map to 4KiB pages
need to be used rather than the 2MiB blocks in Level 2. This
implies that a lookup for an output PA needs to walk through
the Levels 1 to 3, whereas Level 3 has a very high amount of
entries. This overhead is also quantified in the measurement
results in Section VIII.

VII. EXPERIMENTAL SETUP

This section will give an overview of the system setup
that was used to produce the results given in Section VIII.
To produce the results a SoC platform was chosen which is
available to the public domain. Therefore, a Pandaboard [14]
that incorporates the Texas Instruments OMAP5 SoC and a
set of peripherals necessary for ICM-applications is used. The
OMAP5 implements a multi processing unit (MPU) subsystem
with two ARM Cortex-A15 processors. The MPUs have a
direct connection to the main memory or an external memory
interface (EMIF). Each Cortex-A15 core has a private L1
64KiB (32KiB each for instructions and data) cache and a
shared 2MiB L2 (unified) cache. The cache line size is 64
Byte and has 2048 WS.
Two OSs run on the platform, the adversary and the victim
OS-domain. Both OS-domains consists of an upstream Linux
Kernel (Version 3.8.13) and a suitable root file system. The
methods to measure the proposed effects are implemented on
OS-level, using Linux kernel modules.

In order to obtain the results the following functions have
been implemented.

• measure-loop(): The Loop simply executes iterations
over a set of data. During each iteration it loads from a
ML into a CPU register using the ARM LDR instruction.

• DoS-loop(): Compares to the measure-loop without time
measurements.

• get time(): Timestamps at start and end of each iteration
to determine the CPU cycles consumed.

• prepare cachelines(): Determines the CLs to the tar-
geted WS.

• get next CL(): Iterates through the CLs.
The loops iterate over a set of ML/CLs determined by the
equations given in Section V.

measu re loop () {
f o r (k = 0 ; k < TEST ITERATIONS ; k ++) {

r e s e t t i m e r () ;
p r e p a r e c a c h e l i n e s () ;
f o r (l = 0 ; l < v a l u e ; l ++) {

s t a r t = g e t t i m e () ;
ge t nex t CL () ;
end = g e t t i m e () ;
c y c l e s += end − s t a r t ; }}}

Listing 1. Pseudo code to measure the latency

VIII. RESULTS

According to Section V and to VI, the methods have been
evaluated. The results are obtained by measuring latencies of
memory accesses.

0,0%	
50,0%	
100,0%	
150,0%	
200,0%	
250,0%	
300,0%	
350,0%	
400,0%	
450,0%	
500,0%	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	 47	 49	 51	 53	 55	 57	 59	 61	 63	

Im
pa

ct
	 (%

)	

Iterated	 Lines	

Vic0m-‐OS	 Adversary-‐OS	

Fig. 7. Analysis of WS hit

The measurements are performed as follows: The victim OS-
domain logs the latency of its memory accesses by producing
a characteristic workload through the access of a specific
domain block. The adversary-OS works on the same amount
of data within the same domain-block set. The following
characteristics are considered:

• CPU cycle count: Number of cycles consumed by
an operation. This value quantifies the duration of a
measurement. The cycle count was taken from the timer
subsystem of the experimental platform.

• CL count: Number of CLs allocated and iterated
throughout the measurement.

• DoS impact: This value describes the percentage increase
of the CPU cycle count of a operation being interfered
with.

In order to produce the results the arithmetic mean value of the
measurements has been computed. During the measurements
some factors have been observed which produce particular
outliers. Those factors are caused by functionalities such as
cache prediction [15] or bus usage. Technically, it would be
possible to turn off those processor features, but this would
not produce real world results, because an adversary is not
able to do so. The general aim was to prove that the concept
fits the predictions rather than to build a polished output.

A. Denial of Service Impact

In the first measurement is shown how the thrashing impact
compares to the number of CLs iterated in a single WS.
Both systems run the DoS-loop and measure the latency
concurrently. The results to prove the DoS method are depicted
in Figure 7. The most significant impact to the execution
performance of the victim OS peaks at about 457 percent.
This means that by using the attack vector, it is possible to
delay the execution of an operation up to this value. Another
value observed is the number of CLs that have been allocated
to cause the interference. The highest peak of interference
appears when the victim and the attacker are using 16 CLs,
meaning a full WS. If both systems use the same full WS
the possibility that a single CL must be replaced by the cache
is highest. As a result, the prediction of the attack model to
overcommit a common WS is proven to be true.

One of the most important results obtained is the maximum
thrashing impact. Here, the victim OS executes the measure-

0	

20	

40	

60	

80	

100	

120	

140	

M
ea
n	
CP

U
	 C
yc
le
s	

Normal	 DoS	

Fig. 8. Normal memory mapping

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

M
ea
n	
CP

U
	 C
yc
le
s	

Normal	 DoS	

Fig. 9. Domain Block mapping

loop with latency measurement and the adversary OS only
the DoS-loop. The results are shown in Figure 8. For these
measurements both systems iterate over 16 CL, which pro-
duces the highest impact (compare Figure 7). Table II gives
an overview of all observed values. In the test runs, the mean
cycle count of a memory access is about 3,602. By activating
the DoS-loop the cycle count increases up to 132,803. This
implies a DoS impact of about 3686%. Compared to the value
of the previous graph, the significantly higher result is justified
by the frequency of the DoS-loop. If a single iteration of the
DoS-loop runs without the latency marks, then the CPU cycle
count per step is lower.

B. Domain Block Mapping

To evaluate the effect of the DB memory mapping, the
measurements made after establishing the mappings. The
results in Figure 9 compare the CPU cycles consumed during
a data fetch. According to the measurements with the normal
mapping both systems iterate through the same full WS. The
normal execution of the measure-loop reveals a mean cycle
count of 3,599. By applying the DoS-loop to the measurement,
the cycle count rises to 8,911. Consequently, this results in a
DoS impact of about 247,55%. By comparing the mean cycle
counts of DB and normal mapping the DoS impact subsides
significantly.

As mentioned above, the mapping method on second stage
MMU level implies three table walks to convert the IPA input
address to the PA output address. In order to quantify the cost

TABLE II
DOMAIN BLOCK MAPPING IMPACT

Mapping Impact (%) Mean CPU Cycles Std. Derivation

normal - 3,602 0,022

DB - 3,599 0,021

normal DoS 3686,90% 132,803 2,265

DB DoS 247,55% 8,911 2,062

of the additional table walk the latency of the measure-loop
has been observed with the original 2 MiB Level 2 mapping
and the domain block mapping which resides in the Level
3 TT. The results show that the DB mapping method adds
no performance overhead to the memory accesses. The mean
CPU cycles remain at 3,602 in normal mapping and 3,599
using the DB mapping. A feasible reason for not being able
of quantifying the estimated cost is the translation lookaside
buffers (TLB) of the MMUs. Particularly in this architecture
the TLBs stores up to 512 translations. Since, in the scenario
only 32 different CLs are accessed, these translations reside
inside the TLB.

The evaluation shows on the one hand that the DoS caused
by the thrashing of the LLC is feasible and on the other hand
that the countermeasure is able to substantially mitigate these
effects. Furthermore, the performance overhead for domain
blocking is negligible. Nevertheless, the DoS impact on the
DB mapping might be caused by the bus interconnect which
transports the data from main memory through the caches
to the CPUs. The results reveal that the interconnection bus,
which implements the ARM AMBA AXI specification [16],
between the cache and the main memory introduces a surface
for interference.

IX. CONCLUSION

In this article, a method has been introduced to mitigate the
surface for DoS attacks. The method is based on the partition-
ing of memory lines within the main memory. According to
the way-set associativity, these partitions, so called domain
blocks, can be assigned to OS-domains. The mapping is
enforced using a MMU within the stage-two memory address
translation. Additionally the method fits to the system design
paradigm.
Furthermore, this article shows the significance and the need
for a solution to mitigate or prohibit DoS attacks in shared
last level caches. In addition to that, the implementation of
the attack vector is used as a metric to quantify and evaluate
our proposed solution. This proposed domain block mapping
breaks the AMP-paradigm down to the shared caches of CPU-
subsystems in SoCs. Since the approach uses the second-stage
MMU which is used by the system anyway, the cost of the
method is kept at a negligible level. The method enables a
more reliable implementation of AMP-based multi-OSs on
MP-SoCs using shared caches, without the need to modify
the hardware layout. The method and the results also have
impact on other disciplines related to SoCs. In the field of
real-time research, it can be used to make memory access

more predictable, regardless of implementing a multi-OS or
not.

The consideration focuses on a dual core CPU subsystem. In
the future, the technique can be applied and evaluated on SoCs
that incorporate quad (or more) core processors sharing a last
level cache. The proposed domain blocks make it necessary
to break the mapping down to the fully-addressable space
on the SoC. Therefore, solutions to establish these domain
blocks to devices which access the main memory directly
must be considered. Furthermore, the cache interconnection
bus provides a further surface for interference. In future this
particular aspect has to be focussed to fit better to the AMP
system design.

ACKNOWLEDGMENT

The authors would like to thank Alexander Minor for his
excellent practical efforts and comments.

REFERENCES

[1] C. Hammerschmidt, “Harman brings virtualisation and scalability to
automotive infotainment,” Jan. 2014.

[2] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann, “Engineering
automotive software,” Proceedings of the IEEE, vol. 95, no. 2, pp. 356–
373, 2007.

[3] M. Broy, “Automotive software engineering,” in Software Engineering,
2003. Proceedings. 25th International Conference on, 2003, pp. 719–
720.

[4] ARM, “ARM Architecture Reference Manual - ARMv7-A and ARMv7-
R edition,” 2012.

[5] H. Inoue, A. Ikeno, M. Kondo, J. Sakai, and M. Edahiro, “VIRTUS:
a new processor virtualization architecture for security-oriented next-
generation mobile terminals,” in Design Automation Conference, 2006
43rd ACM/IEEE. IEEE, 2006, pp. 484–489.

[6] J. Porquet, C. Schwarz, and A. Greiner, “Multi-compartment: A new
architecture for secure co-hosting on soc,” in System-on-Chip, 2009.
SOC 2009. International Symposium on, 2009, pp. 124–127.

[7] W. Kanda, Y. Murata, and T. Nakajima, “SIGMA System: A Multi-
OS Environment for Embedded Systems,” Journal of Signal Processing
Systems, vol. 59, no. 1, pp. 33–43, Sep. 2008.

[8] Y. Kinebuchi, T. Morita, K. Makijima, M. Sugaya, and T. Nakajima,
“Constructing a multi-os platform with minimal engineering cost,” pp.
195–206, 2009.

[9] S. Cho and L. Jin, “Managing distributed, shared l2 caches through os-
level page allocation,” in IEEE/ACM INTERNATIONAL SYMPOSIUM
ON MICROARCHITECTURE. IEEE Computer Society, 2006, pp. 455–
468.

[10] D. Tam, R. Azimi, L. Soares, and M. Stumm, “Managing shared l2
caches on multicore systems in software,” in In Proc. of the Workshop on
the Interaction between Operating Systems and Computer Architecture
(WIOSCA, 2007.

[11] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and
partitioning in a chip multiprocessor architecture,” in Proceedings
of the 13th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 111–122. [Online]. Available:
http://dx.doi.org/10.1109/PACT.2004.15

[12] F. R. Wagner, W. O. Cesário, L. Carro, and A. A. Jerraya, “Strategies for
the integration of hardware and software ip components in embedded
systems-on-chip,” Integration, the VLSI journal, vol. 37, no. 4, pp. 223–
252, 2004.

[13] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2012.

[14] Texas Instruments, “OMAP5432 Multimedia Device - Silicon Revision
2.0 Evaluation Module,” 2012.

[15] Texas Instruments, Incorporated, “OMAP 5 Specifications,” Tech. Rep.,
2013. [Online]. Available: http://www.ti.com/lsds/ti/omap-applications-
processors/omap-5-processors-products.page

[16] ARM, “AMBA protocol specifications,” 2010.

