
Testing antivirus engines to determine their
effectiveness as a security layer

Jameel Haffejee
Department Of Computer Science

Rhodes University
Grahamstown

JameelHaffejee@gmail.com

Barry Irwin
Department Of Computer Science

Rhodes University
Grahamstown

b.irwin@ru.ac.za

Abstract—This research has been undertaken to empirically
test the assumption that it is trivial to bypass an antivirus
application and to gauge the effectiveness of antivirus engines
when faced with a number of known evasion techniques. A known
malicious binary was combined with evasion techniques and
deployed against several antivirus engines to test their detection
ability. The research also documents the process of setting up
an environment for testing antivirus engines as well as building
the evasion techniques used in the tests. This environment
facilitated the empirical testing that was needed to determine
if the assumption that antivirus security controls could easily be
bypassed. The results of the empirical tests are also presented
in this research and demonstrate that it is indeed within reason
that an attacker can evade multiple antivirus engines without
much effort. As such while an antivirus application is useful for
protecting against known threats, it does not work as effectively
against unknown threats.

Keywords : Malware, Antivirus, Defense

I. INTRODUCTION AND BACKGROUND

A. Background

While antivirus has existed as a security control layer to
protect end users from malicious application for the past
15 years [1]. The basis of how these antivirus application
exercises their method of protection has remained static [1].

This largely unchanged method of detection has led to a
common belief that antivirus engines are an ineffective means
of securing a system, because there is a tendency for them
to provide a false sense of security. This belief is based on
the assumption that it is trivial to bypass an antivirus engines
method of detection if an attacker knows what to avoid.

Antivirus applications primarily rely on a database of known
malicious security artifacts that are compared to information
that is presented to the antivirus application for analysis.
Information that is matched to a signature by the antivirus
is then assumed to also be malicious.

This method of detection has a number of problems. By
associating any application that matches a specific signature
as malicious, antivirus applications commonly falsely flag
applications as malicious. This method of detection also means
that most malicious applications will only be detected after
a researcher working for an antivirus company creates a
signature for the malicious application. Until this signature is
released to the end users, a users system will still be vulnerable

to the malware. As previously when an attacker is aware that
an antivirus engine is checking for a specific signature they
are able to then craft a new malware application that avoids
exhibiting this signature.

B. Defense in depth

Defense in depth is commonly recommend as a security
system to protect networks and is included in the National
Institute of Standards and Technology [2]. Yet we commonly
find systems that do not implement it completely or when
implemented they do not use the recommendations [3]. Most
notable is the use of Antivirus applications as the primary
means of host based defenses without maintaining the system
[4]. Further, more when investigating the implementation of
the defense in depth strategy we find that the same strategy can
applied to the antivirus defense layer. This is determined since
antivirus engines have to cover multiple areas of responsibility.
Since these areas are only covered by a single application,
there is a greater chance of failure [2].

Because of this single point of failure computer security
defenses can be modeled as a zero sum system [5]. Where a
breach in a system’s defenses can allow an attacker complete
control of the system given enough time. By modeling the
system in this manner and then isolating the system into layers
[6], the security system can be isolated and visualized for
stricter control [5]. Each layer either prevents an attacker from
gaining any access or alerting a system administrator that a
potential breach is in progress.

With the usage of malware applications on the increase in
recent years according to data collected in the 2014 Verizon
Data Breach Investigation report [3], antivirus vendors are
trying more than ever to to ensure their product of choice
is the standard. While this in itself is not a problem, it is the
false sense of security that these products provide that leads
companies to be negligent on numerous other systems that
should also been in place to protect the system. It should be
no surprise as well that the antivirus solutions that are sold
to companies to protect them from malware are also available
to the malware authors. This resulted in the malware authors
crafting malware that can evade an antivirus engine and bypass
the end users protection completely. By the time a malware

978-1-4799-3383-9/14/$31.00 ©2014 IEEE

analyst does get to analyze a copy of the malware the damage
has already been done.

C. What is an effective security layer

With this in mind it would be useful to define what
constitutes an effective security layer. While the effectiveness
of a security layer can vary depending on its use within the
overall security structure, ideally the security layer should fail
closed. This means that if a problem were to occur with the
operations of the system that constitutes the security layer,
the system would prevent all access. As stated previously,
this does depend on the implementation of the system. For
example, a monitoring layer can not entirely fail closed since
increasing the notification limit can end up overloading the
operator, which is an unintended side effect.

D. Antivirus Overview

Having largely covered what is expected from an effective
security layer, it is worth giving a short overview of the tasks
required from an antivirus engine. According to Microsoft’s
Safety and security center [7], an antivirus application is “A
computer program that detects , prevents and takes action to
disarm or remove malicious software programs”.

While this definition of an antivirus application does cover
a number of a areas, for this paper we are primarily con-
cerned with prevention and detection. These areas are most
concerning to an attacker, as it would prevent a malicious
application from running if it was detected. If an application
is not flagged correctly, the attacker now has the potential
to change a number of inconspicuous items on the system
that would give them remote access or allow the attacker to
extract information that can allow an attacker alternate means
of access.

With the basic introduction and background covered above
the rest of the paper is organized as follows. Section two
covers the methodology that will be used for the testing in
section three. Section three covers the baseline tests as well the
final tests with the evasion techniques applied. Finally section
four covers a summary of the results from section three and
a direction to take future work.

II. METHODOLOGY

A. Overview

The work conducted tested how antivirus engines operate
from a black box perspective. Furthermore, the approach
taken in this paper is different from the approaches taken by
Jon Oberheide [8], [9] and does not rely on setting up and
maintaining multiple virtual machines. Instead the samples
are collected locally and then sent for remote analysis to
the VirusTotal web service. Once the analysis is completed
remotely, the results are then stored locally for later analysis.

B. Virus Total

The choice to use VirusTotal for the testing process was a
natural process as it would save both setup time and licensing
costs. Furthermore, VirusTotal is the largest publicly available

collection of malware reports which provides the researcher
with the ability to flag false detections and skip the scanning
process when the hash signature of the binary matches one of
a previously scanned binaries.

While these options do make the VirusTotal ideal for
research and testing, it does not allow for rapid scanning of
millions of files in a short period of time as a regular desktop
antivirus application would. The scanning of the binaries
submitted to virustotal are scanned by the same antivirus
engine that would run on a desktop personal computer, except
the scan would be manually initiated versus a background
scanner that would run on a desktop system.

C. Baseline Binary

Unlike previous research done in this area, the antivirus
engines are not tested by simply scanning random malware
samples collected from the Internet. Instead a binary that is
known to be flagged as malicious but is not an inherently
malicious application will be used for testing. This baseline
binary that gets detected as malicious is required so that we
have full control over the binary that is generated. It also
provides a means to test whether the application is scanning
for signatures only or if the actions of the binary are also being
analyzed.

D. Baseline Tests

A basic baseline test will be completed with the baseline bi-
nary to determine if the binary is actually detected as malicious
by VirusTotal. The baseline tests will be run with multiple
binaries to determine which binary is the most suitable.

Once a baseline is determined, a number of known evasion
techniques will be applied in an attempt to make the binary
bypass detection by the antivirus. These tests will then be
recorded and the results used to determine the effectiveness
of an antivirus application at detecting known malicious ap-
plications.

E. Evasion Techniques

As mentioned in the previous subsection, once a baseline
binary is selected after analyzing the different requirements
for a baseline binary, the selected evasion techniques will be
applied to it and then submitted for rescanning.

The evasion techniques selected for testing, are some of
the initial evasion techniques used during the rise of antivirus
engines. These techniques are then categorized as packers or
crypters. These techniques offer a large margin when it comes
to complexity. This means that it is possible to build custom
implementations of each of the techniques that will still follow
the same pattern and idea, but are implemented differently.
This in turn means that we are able to analyze the effectiveness
of techniques versus prior implementations which might have
unique signatures that are present when used.

III. BASELINE TESTING PROCESS

A. Baseline Testing Process

a) Testing Process: The testing process will proceed
according to the following steps.

• Build Malware Sample. A base malware sample will be
built and then wrapped for later submission to VirusTotal.
This will be known as the baseline binary.

• Submit sample to VirusTotal. The sample will be submit-
ted to VirusTotal using the web interface.

• Scan the baseline binary and record results for later
analysis. Details of the sample such as the technique
used , date scanned and number of Antivirus engines that
detected the binary as malicious will be recorded for later
analysis.

• Scan the baseline binary plus and evasion technique and
record results for later analysis. Same as previous point.

1) Baseline binary properties: Before selecting a binary
that will be used for the baseline testing, a number of prop-
erties will be defined that dictate if a binary is suitable for
use in testing. For an application to be considered, it needs to
have the following properties:

• Recognized by multiple antivirus applications as mali-
cious or flagged as an anomaly for further investigation.
The multiple detections are required to ensure that a
single antivirus is falsely flagging an application.

• Can be executed safely. The effects of the application
need to be carefully defined such that a researcher will
not cause unknown harm to their system by running
the application. This will allow the application to be
run without the need for a sandboxed environment and
also allows the researcher to recognize what triggers an
antivirus engine [10].

• Must have source code available. While this is not a
high priority for the tests in this paper, for continuity
of future tests which require that an application re write
itself, the source becomes important (as in the case of
metamorphism).

In the next section each of the baseline applications that will
be tested will be run through the checks detailed in the items
above to evaluate if they meet the requirements for testing an
evasion technique. Once a suitable application is selected, it
will be combined with an evasion technique and submitted to
virustotal for testing.

IV. BASELINE RESULTS

A. Netcat

Based on the properties defined in section 3, the Netcat
application was initially selected for testing. The Netcat ap-
plication is a network utility application commonly used to
debug network issues. However the application was commonly
distributed with a number of malicious dropper binaries that
allowed an attacker to gain remote access.

B. Property Testing

By running through the properties defined, we can test
that Netcat fits all the requirements. To validate that
the application is detected as malicious by multiple an-
tivirus engines, we scan the original that is available
for download from the following location[17] and the

download can be validated with the following sha1 hash
“2d3026b4630789247abf07aa3986d7a697cf4cd”.

a) Multiple Malicious Detections: Once the application
is downloaded, a compiled copy of the binary can be acquired
by extracting the zip file and running the test with the
following command from the command line:

“python scan.py nc.exe”
This python script simply automates the process of upload-

ing the file to VirusTotal and saving the results to file on the
local disk. After executing the script and loading the results,
the following information will be found :

SHA256: 7379c5f5989be9b790d07
1481ee4fdfaeeb0dc7c4566cad836
3cb016acc8145e
File name : nc.exe
Detection ratio : 21 / 46
Analysis date : 2013-09-10

The results confirm that the binary is indeed detected by
multiple antivirus engines as malicious. It also provides us
with a sha256 hash which is more accurate. This will also
allow us to lookup results on VirusTotal in future and extract
the results from the report above.

b) Safe Execution: The next property that needs to be
tested is the safe execution of a binary. By default, when
compiled from source the Netcat application does not have any
special actions. It simply connects to a remote port or opens
a remote port locally, which others can connect to. Unfortu-
nately without significant work into reverse engineering the
application or running the application through multiple tests
in a sandboxed environment that records all environmental
actions, it can not be said the application is not performing
other unknown actions.

Since we have access to the source code of the application,
we can compile a copy of Netcat that we can ensure is not
performing any actions aside from what it was originally
intended to perform. The compilation of the application is
covered in the documents distributed with the application and
as such will not be covered here.

Once the application is compiled it can then reliably be
said that the application will perform as expected without
modification to its original intent. At this point it would be
advisable to perform the previous test again to ensure the
custom compiled version of our application still meets the
previous requirement.

After re running the scan with the same command as before:
“python scan.py nc.exe”
The command will result in the following output.

SHA256 : 087a3c776bde51857c7
4897dc0e3b0f8a6725ab124edcf1
4e4a80d7c454fa4cd
File name : nc.exe
Detection ratio : 1 / 46
Analysis date : 2013-09-15 18:31:02 UTC

These results are unfortunately not ideal for the tests that

we want to perform. If simply recompiling the application is
enough to bypass an antivirus engine it points to the antivirus
engine depending on very simple signature verification for its
detection routines.

c) Source Code: The Netcat application is primarily
distributed via source code in a zip archive, so getting access
to the source is not a problem.

C. Discontinuation of Netcat

While the initial results were promising, the issue raised by
simple recompilation is unfortunately a problem that can not
be ignored. As such an alternative base application was found.

D. Alternative Binary

With the Netcat application ruled out the Metasploit Payload
binary will be tested for validity. The Metasploit payload
binary is distributed with Metasploit framework and is used as
a shell to deliver a users payload upon execution on a targets
system.

When analyzing this scenario it can be compared very
closely to the process that malware authors tend to follow
when trying to gain access to a remote system. As such this
means that the application will more closely reflect an attack
in the wild and its detection or evasion will similarly reflect
scans in the wild.

E. Testing Metasploit Binary

The Metasploit payload binary is not distributed as a single
binary, instead the application inserts the payload the user
wants into a template binary. This template binary is what
will be used for testing. The template combined with a simple
payload to launch a calculator application will be embedded to
ensure that the application is considered active and executable.
Further, only the x86 version will be tested, as this is the most
common architecture that is available for testing. The specific
file that will be used for testing can be found in the Metasploit
distribution under the “exe templates” folder and is named
”template x86 windows.exe”.

d) Multiple Detections: Submitting the application to
VirusTotal for scanning with the command :

“python scan.py template x86 windows.exe”
Will result in the following results.

SHA256: 640fc87b5754d9191
a6d5326d73e105c01bb3ada21
033e3f54bbde250fb59a15
File name: ad21c93553af2
3ecec319c0ea5f11b755acc3342
Detection ratio: 13 / 47
Analysis 2013-09-15 2013-07-09 11:56:24 UTC

While the template did not get flagged by as many antivirus
engines as the Netcat application, it is still enough for use in
the tests. It should be noted though that the higher detection
rate is still most likely attributed to signature comparison.

e) Safe execution: The template binary is an inert appli-
cation and does not have any functionality without a payload
being embedded. As such until a user inserts a payload, the
application can not cause any side affects on the system that
it is executed on.

f) Source Code: The source code for all the templates is
distributed along with the rest of the Metasploit framework.

As we demonstrated with the original Netcat custom build
from source we need to compile and rescan a local build to
ensure that the previous results were not based of a static
signature.

Firstly it is recommended that the build be completed using
mingw, while cygwin does provide similar tools it is more
error prone. For the specific instructions on how to install
mingw refer to the section in which Netcat was built. The
current version of the tests are being run on a Windows 7 pc
with mingw as described earlier.

Next download the template file from [11] and save it to a
file called template.c on disk. There is no make file to build
the template as the original indicating how the author may
have built the binary, as such simply running the following
command will build the template binary.

gcc template.c -o template gcc.exe
Results For Template Scan :

SHA256: 76de5d51b259a52045de
8571995d359c8a398b8487862811
d2d31b8af8b5df6f
File name: template_gcc.exe
Detection ratio: 2 / 47
Analysis 2013-12-08 2013-12-08 11:49:32 UTC:

While the basic compilation with gcc does provide some fa-
vorable results , the number of Antivirus engines that detected
the binary as malicious is low (2/47). This is most likely due
to the fact that the application does nothing at all besides
crash when run. We will next add some basic operation codes
which will be used to launch the calculator application. This
will allow the application to at least run without crashing and
possibly trigger more detection routines.

The opcode template compiles to the same binary as would
be generated by the msfpayload application when using the
template x86 windows.exe binary. Note that the binaries will
not be identical to the byte level as they are compiled on
different computers.

The template file with the opcodes added can be found in
template op.c. Compile it with the following command

gcc template op.c -o template x86 windows op.exe
Once the application is compiled, the binary can be sub-

mitted to virus total again. This will generate the following
results :

SHA256: 1874c340ba2e140aa4c
c825459bf727bd4decb68cffc90
0501f971033a32dafb
File name: template_gcc_op.exe
Detection ratio: 6 / 47

Analysis 2013-12-08

With these results we get slightly better detection rates
(6/47) than the initial version of the scan. These slightly lower
detection rates work in the favor of future analysis as future
scans with an evasion wrapper but a higher detection rate
means that the AV engines are detecting the wrapper instead
of the base application.

The test application can not be compiled with the Microsoft
compiler as the compiled version prevents any potential exploit
code from running.

F. Scanning baseline binaries with known evasion techniques

This last section will scan the baseline binary one more time
with each of the evasion techniques custom implementations
applied. Kevin Roundy and Barton Miller [12] discuss a
number of common packers and encrypters that were tested
as well as their techniques that assist in antivirus evasion.
Based on the detailed analysis performed it is safe to assume
that antivirus engines have performed similar analysis and as
such have signatures to detect these packers or encrypters.
To ensure that the antivirus engines are not simply detecting
known signatures from these applications, a custom packer
and a custom encrypter will be built for the tests.

g) Packer Implementation: A summary of the technique
commonly used for packing a binary is a follows. The author
selects a method for compressing the binary. Depending on
the level of sophistication the author will either build a utility
application that will pack the target application or simply write
a once off script that will pack the target application.

The dropper application which is the output of the utility
application mentioned in the previous paragraph. The dropper
application is comprised of an unpacker executable is pre-built
and injected with a target application. The target application
in this case is any application that the attacker wishes to use
to bypass an antivirus engine.

The platform and language selected to implement both
the packer and dropper is the Microsoft dot Net framework
and the C# language. The packer and dropper have both
been implemented as discussed above. The full details of the
implementation are available on request and have not been
included here due to space requirements.

h) Encrypter Implementation: A summary of the tech-
nique used for encrypting a binary which will be used later
is a follows. The author of the binary selects and encryption
algorithm or builds their own. Next an encrypter as well as
dropper is built in the same way as the packer binary. While
this is not the only method to build an encrypter or the most
sophisticated, it is the simplest and allows for a large amount
of randomization with regards to the parts that are used. As
with the packer the encrypter is built using the .Net framework
using C#. The encryption used in the implementation is AES.
Further the payload is encrypted directly and is not zipped
before encryption.

i) Evasion Tests: For each of the tests (the packer and
encrypter) we build a binary by wrapping the Metasploit

payload with one of the evasion techniques. This will result
in a dropper application that when executed will either extract
the Metasploit payload or decrypt it and then subsequently run
the payload.

The scan results from uploading the packer binary can be
found below, the link to the scan and its details can be found
here [13].

SHA256: df06d7bc21f629b255ece
e954fabf668761b20390ef3fa2612
cb1621cde91826
File name: SelfExtractor.exe
Detection ratio: 2 / 49

Antivirus Result Update
Avast Win32:Malware-gen 20140318
Malwarebytes Backdoor.Bot.gen 20140318

As can be seen only two applications have detected the
program as malicious.

The scan results from uploading the encrypter binary can be
found below, the link to the scan and its details can be found
here [14].

SHA256: 4aad495e717686faeb47b92
49545482d0831f2d1eaafbff637128e
a90ef60d86
File name: SelfDecrypter_OP.exe
Detection ratio: 0 / 49

Unlike with the previous tests none of the antivirus engines
detected the binary as malicious.

V. CONCLUSION

As can be seen from running two of the simplest tests using
the latests signatures from the all the antivirus engines, once a
malicious application is wrapped with a basic antivirus evasion
technique it is able to bypass a significant number of known
antivirus engines at the time.

Considering the simplicity involved with creating and then
modifying these implementations of each of the investigated
evasion technniques it should be reasonable to consider that a
malware author with a financial incentive can create a similar
or better implementation of these techniques.

With this in mind any institute that deals with financials
of others should not consider antivirus engines an effective
means of protection.

While these tests were performed with VirusTotal they could
have been performed with a number of other companies that
provide a similiar service. Performing these tests on other
systems and comparing the results is left as future work.
Furthermore by performing the tests with a provider that has
a application programming interface (API) future research can
re run these tests and compare the results to those that were
done previously. This provides a way to compare past results
and base future tests against previously completed work.

REFERENCES

[1] C. Nachenberg, “Computer virus. coevolution.” http://www.cs.bgu.ac.il/
∼dsec121/wiki.files/j7b.pdf.

[2] R. Harrison, “The antivirus defense-in-depth guide.”
http://www.bitdefender.com/files/KnowledgeBase/file/Antivirus
Defense-in-Depth Guide.pdf.

[3] Verizon, “Verizon data breach investigations report.” http://www.
verizonenterprise.com/DBIR/2014/reports/rp Verizon-DBIR-2014 en
xg.pdf, 2014.

[4] K. R. Straub, “Information security managing risk with de-
fense in depth.” http://www.sans.org/reading-room/whitepapers/infosec/
information-security-managing-risk-defense-in-depth-1224.

[5] O. O. Ibidunmoye E.O., Alese B.K., “Modeling attacker-defender inter-
action as a zero-sum stochastic game.” http://pubs.sciepub.com/jcsa/1/2/
3/.

[6] I. Systems, “Security system and internet security.”
http://pic.dhe.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=
%2Frzaj4%2Frzaj40a0internetsecurity.htm.

[7] Microsoft, “What is antivirus software.” http://www.microsoft.com/
security/resources/antivirus-whatis.aspx.

[8] F. J. Jon Oberheide, Evan Cooke, “Cloudav: N-version antivirus
in the network cloud.” http://static.usenix.org/events/sec08/tech/full
papers/oberheide/oberheide html/.

[9] J. C. H. Orathai Sukwong, Hyong S. Kim, “Commercial antivirus
software effectiveness: An empirical study.” http://www.computer.org/
csdl/mags/co/2011/03/mco2011030063.pdf.

[10] A. Mushtaq, “The dead giveaways of vm-aware malware.”
http://www.fireeye.com/blog/technical/malware-research/2011/01/
the-dead-giveaways-of-vm-aware-malware.html.

[11] Rapid7, “Metasploit template base.” https:
//github.com/rapid7/metasploit-framework/blob/
b6458d2bfa54fa33801da1f62e418ba000e45477/data/templates/src/
pe/exe/template.c.

[12] B. M. Kevin Roundy, “Effectiveness of antivirus in detecting metasploit
payloads.” ftp://ftp.cs.wisc.edu/pub/paradyn/papers/Roundy12-Packers.
pdf.

[13] J. Haffejee, “Virustotal packer scan re-
sults.” https://www.virustotal.com/en/file/
ea39f07cf2200fbf315f2294922ede4aa261d3edbddfc73de4186e29b2515b89/
analysis/1395166900/.

[14] J. Haffejee, “Virustotal encrypter scan re-
sults.” https://www.virustotal.com/en/file/
4aad495e717686faeb47b9249545482d0831f2d1eaafbff637128ea90ef60d86/
analysis/1395170705/.

