
Security Objectives, Controls and Metrics
Development for an Android Smartphone Application

Reijo M. Savola and Markku Kylänpää
VTT Technical Research Centre of Finland

Oulu, Finland
reijo.savola (at) vtt.fi, markku.kylanpaa (at) vtt.fi

Abstract—Security in Android smartphone platforms deployed in
public safety and security mobile networks is a remarkable chal-
lenge. We analyse the security objectives and controls for these
systems based on an industrial risk analysis. The target system of
the investigation is an Android platform utilized for public safety
and security mobile network. We analyse how a security decision
making regarding this target system can be supported by effec-
tive and efficient security metrics. In addition, we describe im-
plementation details of security controls for authorization and
integrity objectives of a demonstration of the target system.

Keywords-Android; security objectives; security metrics;
security effectiveness; risk analysis

I. INTRODUCTION

Android is nowadays the world’s most widely used
smartphone platform. Security management in Android plat-
forms and applications is a remarkable challenge especially due
to its popularity, the openness of the system and the difficulties
in version control procedures. Attacks of various types make it
possible to compromise an Android device and potentially oth-
er information systems to which it has connections.

Security metrics, designed to give efficient input to the
main questions addressed by the security decision-making dur-
ing the full lifecycle, increase our understanding of the security
effectiveness level of the target Android system. The metrics
should be designed based on prioritized risk analysis results.
Prioritized security objectives are needed to steer the metrics
development. Effective and efficient evidence of configuration
correctness, system quality and adequate implementation of
security controls help to manage Android security in a system-
atic way.

The main contribution of this study is in proposing heuris-
tics for security objective and control description, and security
metrics development, based on results of our recent risk analy-
sis from an Android platform [1]. In addition, we discuss some
implementation considerations of the resulting security controls
of authorization and integrity objectives which have been
demonstrated in the form of enhancements to Android.

II. BACKGROUND

A. Security Effectiveness, Objectives, Controls and Metrics

Sufficient security effectiveness (SE) level of the target sys-
tem is the primary concern of security decision-making and
consequently, security measurement. SE is the assurance that
the stated security objectives (SOs) are met in the target system
and the expectations for resiliency in its use environment are
satisfied, while at the same time the system does not behave in
a way other than intended [2–4]. SOs are high level statements
of intent to counter identified threats and/or satisfy the organi-
zational security policies and/or assumptions identified [5].
Security controls (SCs) should be developed based on SOs.

Carefully designed security metrics can be used to model
the SE. Systematically managed security metrics offer effective
and efficient input to security decision-making.

SE can be measured with a relatively high degree of accu-
racy only during long periods of actual operation of the target
system, when it is exposed to real security risk occurrence.
However, in this case, the accuracy declines due to the dynam-
ic nature of the risks. Moreover, penetration testing is often
used to obtain evidence of SE, but this kind of testing has many
limitations compared to a life case.

Because of the major challenges of measuring real security
risk occurrence, when tried directly SE measurement can only
be partial. Indicators of direct partial SE, security correctness,
and software and system quality are different high-level evi-
dence contributing to the overall SE evidence: see Fig. 1 [6].

Figure 1. Example factors contributing to SE [6]

Security correctness is a key factor that contributes to the
SE of the SuI (System under Investigation) due to its concrete-
ness. However, it must be noted that it does not automatically

978-1-4799-3383-9/14/$31.00 ©2014 IEEE

imply SE, and proper RA (Risk Analysis) or at least the use of
best practices is required. The quality of the RA has a crucial
role in the definition and maintenance of security objectives.

B. Iterative Risk Analysis

The reference requirements used in security decision-
making are characterized to be based on (i) security risk, or (ii)
best practices or regulations. Security risk-driven requirements
directly assume the presence of RA, while the latter ones do
not. Security can only be managed to some extent based on
best practices. When the SE level is in focus, sufficient risk
knowledge is needed.

Sufficiently detailed target-specific security risk knowledge
is essential to the effective design of SOs and security metrics.
The RA should be carried out in an iterative way. For example,
the initial phase can be conducted when product requirements
are defined, the second phase when the product is being speci-
fied, and the third phase when then product is under design and
verification. The risks should be prioritized, taking into ac-
count the integrated impact resulting from the estimated severi-
ty and probability of risks. For the purposes of this study, a RA
was performed in co-operation between security researchers
from VTT Technical Research Centre of Finland, and Android
experts with Elektrobit Wireless Communications Ltd. The
results were reported earlier in [1]. Business aspects were fo-
cused upon in the RA.

C. Security Metrics Development by Hierarchical SO
Decomposition

The hierarchical SO decomposition approach was original-
ly described in [10]. Fig. 2 depicts a simplification of the de-
composition principle [11]. Basic Measurable Components
(BMCs) are leaf components of decomposition that clearly
manifest a measurable property of the system [10]. The actual
security metrics, Derived Measures (DMs) can be developed
based on the BMCs. The high-level BMCs shown in Fig. 2 are
Authentication Mechanism Integrity, Authentication Mecha-
nism Reliability, Authentication Identity Uniqueness, Authen-
tication Identity Structure and Authentication Identity Integrity
[10]. The number of nodes in the hierarchy is much larger in
practice. The BMCs of Fig. 2 can be further decomposed, tak-
ing into account the specific system characteristics better.

Figure 2. An example authentication decomposition based on [10]

III. SYSTEM UNDER INVESTIGATION

The target system of the investigation here is a public safety
and security (PSS) mobile network system using the Android

platform. The main services and characteristics of PSS mobile
networks are group communication, encryption services and
high availability [7]. PSS mobile networks utilize a mobile
infrastructure that is very similar to cellular networks. One
major difference is that they incorporate dispatcher stations for
managing the communication of the user groups. To investi-
gate advanced security controls and security measurement in
the target system, a demonstrator has been developed using an
Elektrobit RaptorPad Android device (see Fig. 3). Currently,
the demonstrator includes advanced security controls for access
control and integrity measurements.

The majority of the Android platform’s security solutions
originate from Linux. Memory, process, user, and access con-
trol permission management are provided by the Linux kernel,
but are modified from traditional desktop usage. A major chal-
lenge with Android’s modified Linux kernel is the upgrade
process: In many older versions, the version of the kernel de-
ployed is clearly out of date, and users have devices whose
Android version is no longer upgraded by the device manufac-
turer. Moreover, understanding system resource permissions
can be difficult for users. During installation of an application,
the user is able to see the required permissions but have only
two options to choose from: to let the application access all
desired resources, or not to install the application at all. This is
a challenging situation from a security perspective, because
there have been [8] and still are [9] several malicious applica-
tions in Google Play and other marketplaces.

Figure 3. Demonstrator Android device: Elektrobit RaptorPad

IV. RISK-DRIVEN SECURITY OBJECTIVES AND CONTROLS

The risk-driven approach assumes development of SOs
based on the prioritized risks. As our goal is high SE, we use
the prioritized RA results as the basis. Often in practice,

though, the SOs are based on risk management (RM) decisions.
The RM can choose for a risk to be mitigated, cancelled, or
accepted.

In general, SO definition should be carried out in priority
order. However, this process is not straightforward as there is
no one-to-one mapping between the risks, SOs and SCs. For
example, the most critical risk, R1 (unauthorised input of falsi-
fied data) has interdependency with R7 (loss of life). Even
though both are critical risks, the criticality of R1 can be seen
as even more emphasised than before investigation of the in-
terdependencies. A risk may enable several other risks. For
example, R1 is able to cause various unexpected risks.

The interdependencies between the risks can easily cause
the process of SO definition to be challenging. Even though
there are many interdependencies among risks, they should be
listed in the manner shown in the tables. Otherwise, infor-
mation about the prioritization is lost, potentially impeding SE
in the security controls to be implemented.

Table I lists the top 10 risks out of the 26 identified ones in
[1] for Case 1. The rank of each risk is shown by the number in
the first column. ‘S’ refers to the severity of the consequences
if the risk is actualized, and ‘P’ denotes the probability of the
risk being realized. The scale for each is 0–3 from ‘no risk’ to
‘extremely high’ S or P, with increments of 0.25. ‘R:’ denotes
‘risk arising from’, and is used in connection with attack types,
vulnerabilities, and faults that cause a risk.

Note that the RA/SO/SC/metrics process is the focus of the
study. The results from RA, SOs and SC descriptions are dis-
cussed as examples.

TABLE I. TOP 10 PRIORITISED RISKS FOR CASE 1

R# Description S P

1 R: unauthorised input of falsified data 3.00 2.00

2
R: unavailability of the PSS Network at a
critical moment (DoS, denial of service)

3.00 1.00

3 R: unauthorised root access 2.75 1.25

4 R: malicious loading of remote code 2.75 1.00

5
R: critical security functionality deployed in
software (SW) but designed for hardware
(HW)

2.25 3.00

6 R: network shut down due to device problems 3.00 0.50

7 Loss of life due to lack of resuscitation 3.00 0.50

8
R: activation of dormant malware at a critical
moment

2.50 1.00

9
R: investigation of the target device in a
laboratory environment

2.50 1.00

10 R: utilisation of open interfaces for attacks 2.25 1.00

Table II lists the heuristics for SOs and SCs of the risks
mentioned in Table II. Most of the SOs address the main secu-
rity dimensions according to the ‘CIA model’, confidentiality,
integrity and availability. The text in them is shortened, empha-
sizing the main dimensions. In the SC column, ‘T’ indicates
technical controls, whereas ‘M’ refers to management (non-
technical) controls.

TABLE II. SECURITY OBJECTIVES AND CONTROLS FOR TABLE I

R# SO SC

1

(i) Allow only authorized
persons to use devices and
network infrastructure, (ii)
ensure integrity in input data

(i) Sufficient authorization in
devices and network
infrastructure equipment (T),
(ii) integrity enforcing
mechanisms in data
communication (T), (iii)
authorization policies (M)

2

Ensure the high availability
of the network at critical
moment, with enough
confidentiality

(i) Network resource
management for authorized
prioritization (T), (ii) intrusion
detection and network traffic
monitoring (T), (iii) sufficient
authorization in devices and
network infrastructure
equipment (T), (iii) use and
authorization policies during
critical moments (M)

3

(i) Allow only authorized
persons to use devices and
network infrastructure, (ii)
ensure that no procedures
make unauthorized root
access possible, (iii) ensure
confidentiality of authorized
root access procedures

(i) Sufficient authorization in
devices and network
infrastructure equipment (T),
(ii) Management of correct
configuration (T), (iii) proper
testing of apps to be used in the
PSS scenarios, (T,M) (iv)
authorization policies (M)

4

(i) Allow only authorized
persons to use devices and
network infrastructure, (ii)
ensure that no procedures
make unauthorized root
access possible, (iii) ensure
confidentiality of authorized
remote code procedures

(i) Sufficient authorization in
devices and network
infrastructure equipment (T),
(ii) management of correct
configuration (T), (iii) proper
testing of apps to be used in the
PSS scenarios, (T,M) (iv)
authorization policies (M)

5
Ensure high integrity of
critical security functionality

(i) Management of correct
configuration (T), (ii) proper
testing of critical security
solutions (T,M)

6

Ensure sufficient integrity of
devices, communication and
networks, and do not allow
unauthorized actions

(i) Integrity and authenticity
enforcing mechanisms in
devices, network infrastructure
and data communication (T),
(ii) authorization policies (M)

7

Ensure the high availability
of the network and devices at
life-threatening critical
moment, even with some loss
of confidentiality of
information

(i) Network resource
management for authorized
prioritization (T), (ii) intrusion
detection and network traffic
monitoring (T), (iii) use
policies during critical
moments (M)

8
Ensure sufficient integrity of
devices

(i) Management of correct
configuration (T), (ii) proper
testing of critical security
solutions (T,M)

9

Ensure sufficient
confidentiality, integrity and
authorization of critical
functionality, and enforce
revokation procedures from
the network when a device is
investigated by intruders

(i) Sufficient authorization in
devices and network
infrastructure equipment (T),
(ii) side-channel attack
protection, (iii) mechanisms to
revoke device’s rights

10

Ensure sufficient
confidentiality, integrity and
authorization in critical
points near open interfaces

(i) Sufficient authorization in
devices and network
infrastructure equipment (T),
(ii) integrity enforcing
mechanisms in data
communication (T), (iii)
authorization policies (M), (iv)
correct firewall configuration
(T).

As can be seen from the SOs and SCs, there are a lot of
commonalities. As expected, authorization is a core security
control. Configuration correctness and integrity enforcement
also play an important role in the mitigation of these top priori-
tized risks.

Interdependencies of different SOs can be very different
from the interdependencies of different risks. This is expected,
since moving from the analysis of risks to the analysis of how
one should protect against them is a significant step, yet the
risk knowledge is needed when thinking about the SOs. For
example, consider the case of R2 and R7: Although R2 and R7
are quite different, the resulting SOs are reminiscent of each
other. However, there are two big differences: SO2 addresses
networks and aims at preserving confidentiality, whereas SO7
also addresses devices, and aims to provide a quick response
with the help of the PSS system, and if needed, does not pay
much attention to information confidentiality. SC5 and SC8,
and the respective SCs, are very similar.

V. SECURITY METRICS HEURISTICS

In the following, we propose heuristics for security metrics
development based on the risk-driven SOs. The heuristics are
categorized as (i) security controls, (ii) security effectiveness
abstract models, and (iii) BMC development. The first two are
discussed in the first two subsections, and the third one in sub-
sequent subsections concentrating on core BMCs. The pro-
posed BMCs are modified from the one proposed in [10].

A. Security Controls Categories

From the results of the SO and SC development one can
find the core security control categories which should be ad-
dressed by metrics.

In Table II, the following SC categories can be identified:
(i) authorization (SC1, SC2, SC3, SC4, SC9, SC10), (ii) integ-
rity mechanisms and correct configuration (SC1, SC4, SC5,
SC6, SC8, C10), (iii) security testing (SC3, SC4, SC5, SC8),
(iv) intrusion detection and traffic monitoring (SC2, SC7), (v)
side-channel attack protection (SC9) and (vi) firewall (SC10).

The categorization of SCs helps in developing Security Ef-
fectiveness Abstract Models (SEAMs), the next step in metrics
development. Note that the actual SCs in a category contain a
lot of differences. For example, access control can be designed
for the end-user device, for network equipment management or
for some other purpose.

B. Security Effectiveness Abstract Models

SEAM [1] is a simplified decomposition model that en-
compasses the core knowledge of factors contributing to the SE
of the target system. For example, an SEAM can be developed
using the information in Fig. 2 for the purposes of authentica-
tion metrics development. Six strategies for security measure-
ment objective decomposition were proposed in [1], consisting
of basic and integrated strategies. The basic strategies ad-
dressed direct partial security effectiveness, security configura-
tion correctness, and software and system quality. Integrated
strategies were proposed for pure security effectiveness, the
security effectiveness vs efficiency trade-off and for compli-

ance measurements, using as their reference models best prac-
tice documents and regulations.

In general, there is a need for SEAMS for all the security
control categories mentioned above. As in Android there are
many software-related quality concerns: the SEAM for SW and
system quality should be developed in addition. Applicable
vulnerability database information should be integrated to it.

Compliance with regulations is crucial for the use of a PSS
mobile network system. In addition to the SEAMS for all secu-
rity control categories and SW and system quality, SEAM
compliance is clearly needed, although compliance concerns
are not listed in the RA.

C. Authorization and Authentication

A proper authorization policy is the basis for the entire au-
thorization mechanism. In addition, seamless co-operation with
the authentication mechanism is also crucial. In the target sys-
tem, there are demanding requirements for both device-level
authorization and network infrastructure management authori-
zation. Consequently, the average Authentication Effectiveness
(AUE) – is a core metric.

At the high level, AUE is dependent, according to Fig. 2, on
the following parameters:

 AUE = f(AIUE, AISE, AIIE, AMRE, AMIE),

where AIUE is Authentication Identity Uniqueness Effec-
tiveness, AISE Identity Structure Effectiveness, AIIE Identity
Mechanism Reliability Effectiveness, AMRE Mechanism Reli-
ability Effectiveness, and AMIE Mechanisms Integrity Effec-
tiveness.

Average Authorization Effectiveness (AZE) is largely de-
pendent of AUE:

 AZE = f(AUE, ACE, ACPE),

where AUE is the average Authentication Effectiveness,
ACE Access Control Effectiveness, and ACPE Access Control
Policy Effectiveness.

D. Availability

Availability is a high-level measurement dimension, as oth-
er dimensions, such as authorization and secure communication
(in the form of confidentiality and integrity) are crucial precon-
ditions for availability. QoS performance metrics are also part
of the availability decomposition, especially for the purposes of
DoS or DDoS attacks detection. Availability is typically meas-
ured as the percentage of the time during which the target sys-
tem is ‘up’ or, meaning essentially the time when information
is available from the system. Availability metrics AV can be
based on the following parameters:

 AV = f(AUE, AZE, IE, CE, QE),

where AUE is average authentication effectiveness, AZE is
authorization effectiveness, IE is integrity effectiveness, CE is
confidentiality effectiveness, RE is the resilience effectiveness,
and QE is the QoS effectiveness indicator.

VI. ENHANCEMENTS OF SECURITY CONTROLS IN

DEMONSTRATOR

Table I describes prioritized risks for the PSS device. Risk
1 (unauthorized input) is typically handled in the application
level. All input data should be verified. Also, the second priori-
ty risk 2 (unavailability of PSS Network) is infrastructure-level
denial-of-service threat. The next two risks, 3 and 4 (unauthor-
ized root access and malicious loading of remote code), could
be mitigated by enhancing access control and integrity protec-
tion. In the following, we discuss some implementation-level
enhancements to mandatory access control and integrity pro-
tection, implemented in our target system demonstrator.

The traditional desktop approach to malware protection has
been antivirus software. However, controls such as antivirus
software and malware scans for apps from application stores,
are reactive solutions to the malware problem. The proactive
solution is to harden the platform itself, so that attacking it is
more difficult. Hardening should be done without breaking
legacy applications, which means that all userspace modifica-
tions should be minimized. However, PSS devices could be
considered to be special devices that are only meant to run spe-
cific applications, relaxing this compatibility requirement
slightly. The Android kernel, which is based on the Linux ker-
nel, contains many security frameworks which can be enabled
and configured in a way that is still compatible with legacy
applications.

A. Mandatory Access Control

Google has now integrated SELinux-based SEAndroid [12]
to Android. SEAndroid is used to control a Dalvik virtual ma-
chine (VM) running Java bytecode and Interprocess Communi-
cation (IPC) mechanisms. Since Android release 4.4 (KitKat),
SEAndroid is run in enforcing mode, making it the default
choice to enhance access control. SEAndroid is mainly used to
protect Android system software. Java applications are classi-
fied to pre-defined SEAndroid security domains based on their
origin and installation package signing. Application compati-
bility requirements with older Android releases have limited
the ways in which MAC can be applied to third-party applica-
tions as modifications should not break Android Compatibility
Test Suite [13].

SELinux was the first MAC framework in Linux kernel,
but it is not the only one. Another Linux upstream kernel,
MAC framework Smack [14], which is now also used in the
Tizen operating system [15], could be a potential alternative to
SEAndroid, but provides only limited functionality, and exten-
sions to control middleware are less clear than in SEAndroid.
Although it would have been straightforward to use SEAndroid
as a MAC framework, we considered using Smack and also
implemented Smack support in the demonstrator. Both
SEAndroid and Smack are based on access rules for subjects
(e.g. processes) and objects (e.g. files). File system labels are
stored in extended attributes of the file system.

Android Open Source Project (AOSP) source code was
used as a basis for the demonstrator. The modifications re-
quired to support Smack were quite straightforward, as re-
quired changes were closely correlated to areas where the
SEAndroid project has also modified the AOSP source code.
File system labelling tools were modified to create Smack la-
bels. Device file labelling is still missing in our demonstrator
but could be added, utilizing ideas from [16]. Userspace modi-
fications included modifications to the ‘init’ process, Dalvik
VM, and Zygote application launcher to manipulate Smack
labels. Toolbox commands ‘ls’ and ‘ps’ were also modified to
display Smack labels. The init process is used to load Smack
policy and to also set Smack labels to privileged tasks. Smack
userspace library was used [17]. Smack was configured into the
use in kernel configuration. Kernel changes included addition
of Binder IPC Linux Security Module (LSM) hooks using a
patch from SEAndroid [18] and implementing these hooks in
Smack kernel code. Initrd was used to store initial Smack poli-
cy.

The main reason to use Smack instead of SEAndroid as a
MAC framework is that it is simpler and has more understand-
able security policy definitions. Recent kernels also contain
many Smack-related changes, e.g. providing support for longer
labels. However, we are using only classic Smack features, as
some of our test systems were using a rather old kernel ver-
sions. As a starting point we tried to emulate SEAndroid secu-
rity policy. However, security policy development turned out to
be time-consuming and difficult, because of the lack of an
equivalent to the SELinux permissive mode in Smack. Such a
mode was proposed for Smack, but the idea was rejected by the
author of Smack [19]. Also, SEAndroid policy emulation is not
the best approach for security policy development.

Another drawback was recognized when the Smack model
was used to control Android Binder-based IPC. According to
Smack documentation [20], sockets are data structures attached
to processes, and sending a packet from one process to another
requires that the sender must have write access to the receiver.
The receiver is not required to have read access to the sender.
As Smack recommends using file write permission also to con-
trol IPC access, adding Smack rules could open unnecessary
write access for certain files. This could be prevented by add-
ing a new IPC-specific access method attribute to Smack. Cur-
rently Smack access settings can contain settings ‘rwxa’ (read,
write, execute, and append). The initrd location of Smack secu-
rity policy file was also inconvenient. There should be a writa-
ble and updatable policy file that could be signed and could be
loaded after verification. However, the initrd policy should be
kept as a fallback.

One approach could be to use both SEAndroid and Smack
simultaneously. There is an unofficial patch set called LSM
stacking [21] to support multiple security modules in the ker-
nel. SEAndroid could be used to protect system software using
the AOSP code and there could be additional Smack rules to
sandbox third party software. However, this approach is proba-
bly too complex. Currently there are no plans to integrate LSM
stacking to the official Linux kernel. Major modifications to
the AOSP code are not convenient as the code is tightly con-
trolled by Google. Although the code is open source, the de-
velopment model is not truly open. Modifications become visi-

ble only after releases, and Google does not share development
plans in public. A large porting effort may be needed after re-
leases.

B. Integrity Protection

Kernel-based integrity protection frameworks can be used
to protect Android systems against unauthorized system soft-
ware modifications (e.g. utilizing offline attacks). Android re-
lease 4.4 (KitKat) includes an experimental block-based integ-
rity scheme called dm-verity [22]. There are other alternatives
such as the file-based Integrity Measurement Architecture
Extended Verification Module IMA/EVM [23]. IMA maintains
a runtime measurement list, which can be displayed by root
access. These frameworks are meant for read-only filesystems.
There is also a block-based alternative called dm-integrity [24]
that can be used with writable filesystems. Block-based alterna-
tives must also have storage to store reference block hashes.

The demonstrator is using IMA for integrity measurements.
When a native application, shared library or shell script is load-
ed for execution SHA1 hash of the content is calculated and
measurement is stored by including the hash value to a kernel
internal storage variable using a so-called extend operation.

IMA supports only measurements, and there is no integrity
enforcement. EVM component is for integrity enforcement, but
it requires storage of integrity reference values to extended
attributes and also signing these extended attributes and key
management for verification keys. IMA/EVM concept requires
the use of recent kernels, unless EVM part is replaced by a
more straightforward HMAC-based approach. There were still
important EVM-related modifications even in the recent Linux
3.16 kernel [25]. Another problem with IMA is that it only
measures native applications and not Java-based Dalvik appli-
cations. Nauman et al. [26] have developed a framework that
allows measurement of Java code running in Dalvik VM.
However, Google is now replacing Dalvik VM with a new
virtual machine called ART.

An encrypted file system provides confidentiality and pro-
tection only against offline attack, but does not offer control
point to execution of native code executables. The choice obvi-
ously depends on a solution domain-specific threat model.

VII. RELATED WORK

Haddad et al. [27] introduced an abstract security model
called Assurance Profile (AP) for metrics definition. Its focus
is on security assurance objectives, and risk-driven security
objectives are not addressed. The decomposition part of the
security metrics development approach discussed here is simi-
lar in general to the Goal Question Metrics (GQM) of Basili et
al. [28] refining specification of software measurements. It
should be noted that the GQM definitions do not include heu-
ristics to define security metrics. The challenges of requirement
decomposition in general have been discussed by Koopman
[29] and Kirkman [30]. As problems, they mention ‘gaming’
promoted by too great a focus on goals, excessive subsystem
decomposition, insufficient decomposition, unattributed re-
quirements, excessive hierarchy and issues of change manage-
ment. These problems assume that not much human interaction
is used in the decomposition process, and that there are no tools

available for decomposition management. There are already a
variety of specific security metrics proposed in the literature, as
summarized e.g. in metrics collections [31–34]. These metrics
can be used at the detailed level, when developing DMs from
BMCs. Standards have achieved only limited success in ad-
vancing security measurement, because they are rigid and cre-
ated for certification, and carrying out these processes requires
significant amounts of time and money [35]. The most widely
used of these efforts is the CC (ISO/IEC 15408) Standard [36]
which focuses primarily on documentation rather than the actu-
al security effectiveness of the operational system. The
ISO/IEC 27004 standard [37] addresses measurement, report-
ing and improving the effectiveness of Information Security
Management Systems (ISMS). However, this standard does not
support technical systems well.

Android OS security risks were studied in general by Fedler
et al. They summarize in [38] that most successful attacks af-
fecting Android can be attributed to negligent user behavior.
However, they admit that attacks on Android devices are be-
coming more sophisticated. Their conclusion calls for enough
emphasis on security policies (management perspective). The
security-critical case investigated in our original RA calls for a
variety of security controls (and a variety of security metrics.).

Before Google adopted the SEAndroid approach there were
many examples of applying various MAC implementations to
Android. For example, TrustDroid uses Tomoyo [39] and
FlaskDroid is using SELinux [40]. Nowadays there are also
many Android firmware ROM variations that are utilizing
AOSP source code, mixing it with vendor specific binaries.
Some of these are also tackling security issues such as Cyano-
genMod [41][42]. Samsung has extended Android SEAndroid
concept in their Knox product [43], providing more isolated
containers targeting bring-your-own-device (BYOD) enterprise
customers. Other manufacturers have so far kept Google’s se-
curity approach, although some of them have replaced
Google’s services with their own equivalents. Examples of
these are Amazon and Nokia/Microsoft who provide Android
devices without Google services.

VIII. CONCLUSIONS AND FUTURE WORK

Risk-driven security engineering and metrics development
assumes the development of security objectives and controls
based on the prioritized risks. We analysed security objectives
for an Android platform utilized for a public safety and security
mobile network based on iterative industrial risk analysis re-
sults. There were many interdependencies between the original
risks. Furthermore, security objectives and controls show a
different pattern of interdependencies. The original risk analy-
sis results should be preserved in further actions to offer appro-
priate emphasis.

The core security controls for the target system are authen-
tication and authorization, integrity, and confidentiality con-
trols. In particular, access control plays an important role in the
target system, where there are health-critical usage scenarios.
There are a lot of vulnerabilities in Android platforms, and
many of them can give root access. Therefore, software and
system quality assurance are important for the system.

Furthermore, we proposed heuristics for security metrics
development, based on the risk-driven security objectives. The
heuristics are categorized by security controls, security effec-
tiveness abstract models, and base measure development.

We have also discussed some implementation-level en-
hancements to mandatory access control and integrity protec-
tion, implemented in our target system demonstrator. Experi-
mental Smack access control framework and IMA-based integ-
rity measurement framework were discussed. Although open
source Android can be used to experiment with new features,
the lack of an open development model in Android can make
custom modifications hard to maintain in the long run.

In our future work, we plan to focus on defining detailed
security metrics for the target system, managing the metrics by
a visualization tool, and gathering validation information from
realistic use cases of the demonstration system. We also plan to
enhance the integrity measurement part to support remote attes-
tation that would be an important use case for PSS devices.

ACKNOWLEDGMENT

The work presented here has been carried out in two re-
search projects: the IoT Program (2012-2014), launched by the
Finnish Strategic Centre for Science, Technology and Innova-
tion TIVIT Plc., and SASER-Siegfried Celtic-Plus project
(2012-2015).

REFERENCES

[1] R. Savola et al., “Toward risk-driven security Measurement for Android

smartphone platforms,” Proc. Information Security South Africa (ISSA)
2013, Johannesburg, August 14-16, 2013, 8 p.

[2] R. Savola, “Security metrics taxonomization model for software-
intensive systems,” Journal of Information Processing Systems, Vol. 5,
No. 4, Dec. 2009, pp. 197–206.

[3] W. Jansen, “Directions in security metrics research,” U.S. National
Institute of Standards and Technology, NISTIR 7564, Apr. 2009, 21 p.

[4] ITSEC. Information Technology Security Evaluation Criteria (ITSEC),
Version 1.2, Commission for the European Communities, 1991.

[5] ISO/IEC 15408-1:2005. Common Criteria for Information Technology
Security Evaluation – Part 1: Introduction and General Model,
International Organization for Standardization and the International
Electrotechnical Commission, 2005.

[6] R. Savola, “Strategies for security measurement objective
decomposition,” ISSA 2013, 15–17 August 2013, Johannesburg, South
Africa, 8 p.

[7] M. Peltola, “Evolution of public safety and security mobile networks,”
licentiate thesis, Aalto University School of Electrical Engineering,
Espoo, Finland, 2011.

[8] J. Boutet, Malicious Android Applications: Risks and Exploitation,
SANS Institute, 22 March 2010.

[9] D. Gray, TETRA: Advocate’s Handbook, from Paper Promise to
Reality, 2003.

[10] R. Savola and H. Abie, “Development of measurable security for a
distributed messaging system,” International Journal on Advances in
Security, Vol. 2, No. 4, 2009, pp. 358–380 (published in March 2010).

[11] C. Wang and W.A. Wulf, “Towards a framework for security
measurement”, Proceedings of 20th National Information Systems
Security Conference, 1997, pp. 522–533.

[12] S. Smally and R. Craig, “Security Enhanced (SE) Android: Bringing
flexible MAC to Android,” 20th Annual Network and Distributed System
Security Symposium (NDss 2013), Feb. 2013.

[13] Google, “Android Compatibility Test Suite”, http://source.android.com
/compatibility/cts-intro.html [Accessed July 8, 2014]

[14] C. Schautler, “The Simplified Mandatory Access Control Kernel, Smack
white paper,” schaufler-ca.com/yahoo_site_admin/assets/docs/
SmackWhitePaper.257153003.pdf [Accessed July 8, 2014].

[15] Tizen, “Security/Overview”, https://wiki.tizen.org/wiki/Security/
Overview [Accessed July 8, 2014]

[16] E. Reshetova, ”Patch for Smack labelling support in udev,” systemd-
devel mailing list, http://lists.freedesktop.org/archives/systemd-
devel/2013/May/010934.html [Accessed July 8, 2014]

[17] Smack team, “Smack userspace library”, GitHub source code
repository, https://github.com/smack-team/smack [Accessed July 8,
2014]

[18] S. Smalley, “Add security hooks to binder and implement the hooks for
SELinux”, Android kernel patch, Nov 5, 2012, https://android.
googlesource.com/kernel/common.git/+/a3c9991b560cf0a8dec1622fcc0
edca5d0ced936 [Accessed July 8, 2014]

[19] O. Aciicmez, “SMACK: Permissive mode support”, Linux Security
Module mailing list, http://marc.info/?t=130092518400001&r=1&w=4
[Accessed July 8, 2014]

[20] C. Schaufler, “Smack description from the Linux source tree”,
http://scahufler-ca.com/description_from_the_linux_source_tree
[Accessed July 8, 2014]

[21] J. Edge, ”Another LSM stacking approach”, Linux Weekly News, Oct 3,
2012, http://lwn.net/Articles/518345/ [Accessed July 8, 2014]

[22] M. Baines, W. Drewry, “Integrity-checked block devices with device
mapper”, Linux Security Symposium 2011, http://selinuxproject.
org/~jmorris/lss2011_slides/LSS_11_Integrity_checked_block_devices.
pdf [Accessed July 8, 2014]

[23] D. Kasatkin and M. Zohar, “Integrity Measurement Arhitecture”.
SourceForge. http://sourceforge.net/p/linux-ima/wiki/Home/ [Accessed
July 8, 2014]

[24] D. Kasatkin, ”dm-integrity: integrity protection device-mapper target”,
Jan 22, 2013, http://lwn.net/Articles/533558/ [Accessed July 8, 2014]

[25] J. Edge, “The 3.16 merge window concludes”, Linux Weekly News, Jun
18, 2014, http://lwn.net/Articles/602212/ [Accessed July 8, 2014]

[26] M Nauman, S Khan, X Zhang, and JP Seifert, “Beyond kernel-level
integrity measurement: enabling remote attestation for the Android
platform” - Trust and Trustworthy Computing, Springer Berlin
Heidelberg , 2010, pp. 1–15.

[27] S. Haddad, S. Dubus, A. Hecker, T. Kanstrén, B. Marquet and R.
Savola, “Operational security assurance evaluation in open
infrastructures,” Proc. CRiSIS 2010, pp. 100–105.

[28] V. Basili, G. Caldiera, and H.D. Rombach, ”The Goal Question Metric
approach,” J. Marciniak (Ed.), Enclyclopedia of Software Engineering,
Wiley, 1994.

[29] P. Koopman, “A Taxonomy of Decomposition Strategies Based on
Structures, Behaviors, and Goals,” Design Theory & Methodology ’95,
1995.

[30] D. Kirkman, “Requirement Decomposition and Traceability,”
Requirements Engineering, Vol. 3, No. 2, 1998, pp. 107–114.

[31] D. S. Herrmann, Complete Guide to Security and Privacy Metrics –
Measuring Regulatory Compliance, Operational Resilience and ROI,
Auerbach Publications, 2007, 824 p.

[32] A. Jaquith, Security Metrics: replacing Fear, Uncertainty and Doubt,
Addison-Wesley, 2007.

[33] N. Bartol, B. Bates, K.M. Goertzel, and T. Winograd, Measuring Cyber
Security and Information Assurance: A State-of-the-art Report,
Information Assurance Technology Analysis Center, May 2009.

[34] V. Verendel, “Quantified security is a weak hypothesis: a critical survey
of results and assumptions,” New Security Paradigms Workshop,
Oxford, U.K., 2009, pp. 37–50.

[35] W. Jansen, “Directions in security metrics research,” U.S. National
Institute of Standards and Technology, NISTIR 7564, Apr. 2009, 21 p.

[36] ISO/IEC 15408-1:2005. Common Criteria for Information Technology
Security Evaluation – Part 1: Introduction and General Model,

International Organization for Standardization and the International
Electrotechnical Commission.

[37] ISO/IEC 27004:2009. Information Technology – Security Techniques –
Information Security Management – Measurement. International
Organization for Standardization and the International Electrotechnical
Commission.

[38] R. Fedler, C. Banse, C. Krauss and V. Fusenig, “Android OS security:
risks and limitations – a practical evaluation,” Fraunhofer AISEC
Technical Report, May 2012.

[39] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and B.
Shastry, ”Practical and lightweight domain isolation on Android”
SPSM'11, Chicago, Illinois, USA, October 2011.

[40] S. Bugiel, S. Heuser, and A.-R. Sadeghi, ” Flexible and fine-grained
Mandatory Access Control on Android for diverse security and privacy

policies” 22nd USENIX Security Symposium (USENIX Security '13),
USENIX. 2013.

[41] Cyanogenmod – Android Community Operating System, http://www.
cyanogenmod.org [Accessed July 8, 2014]

[42] N. Willis, ”CyanogenMod's incognito mode,” Linux Weekly News, 24
July 2013, https://lwn.net/Articles/560527/ [Accessed July 8, 2014]

[43] Samsung, ”Samsung KNOX - Technical Details”,
https://www.samsungknox.com/overview/technical-details [Accessed
July 8, 2014]

