
Towards a Sandbox for the Deobfuscation and
Dissection of PHP Malware

Peter M. Wrench
Department of Computer Science

Rhodes University, P.O. Box 94, Grahamstown 6140
Email: g10w1139@campus.ru.ac.za

Barry V. W. Irwin
Department of Computer Science

Rhodes University, P.O. Box 94, Grahamstown 6140
Email: b.irwin@ru.ac.za

Abstract—The creation and proliferation of PHP-based Re-
mote Access Trojans (or web shells) used in both the compromise
and post exploitation of web platforms has fuelled research
into automated methods of dissecting and analysing these shells.
Current malware tools disguise themselves by making use of
obfuscation techniques designed to frustrate any efforts to dissect
or reverse engineer the code. Advanced code engineering can
even cause malware to behave differently if it detects that it is
not running on the system for which it was originally targeted. To
combat these defensive techniques, this paper presents a sandbox-
based environment that aims to accurately mimic a vulnerable
host and is capable of semi-automatic semantic dissection and
syntactic deobfuscation of PHP code.

Index Terms—Code deobfuscation, Sandboxing, Reverse engi-
neering

I. INTRODUCTION

The overwhelming popularity of PHP as a hosting platform
[1] has made it the language of choice for developers of
Remote Access Trojans (RATs) and other malicious software
[2]. Web shells are typically used to compromise and monetise
web platforms by providing the attacker with basic remote
access to the system, including file transfer, command ex-
ecution, network reconnaissance and database connectivity.
Once infected, compromised systems can be used to defraud
users by hosting phishing sites, perform Distributed Denial of
Service (DDOS) attacks, or serve as anonymous platforms for
sending spam or other malfeasance [3].

The proliferation of such malware has become increasingly
aggressive in recent years, with some monitoring institutes
registering over 70 000 new threats every day [4]. The sheer
volume of software and the rate at which it is able to spread
make traditional, static signature-matching infeasible as a
method of detection [5], [6]. Previous research has found
that automated and dynamic approaches capable of identify-
ing malware based on its semantic behaviour in a sandbox
environment fare much better against the many variations
that are constantly being created [5], [7]. Furthermore, many
malware tools disguise themselves by making extensive use
of obfuscation techniques designed to frustrate any efforts
to dissect or reverse engineer the code [8]. Advanced code
engineering can even cause malware to behave differently if
it detects that it is not running on the system for which it was
originally targeted [9]. To combat these defensive techniques,
this project intended to create a sandbox environment that
accurately mimics a vulnerable host and is capable of semi-

automatic semantic dissection and syntactic deobfuscation of
PHP code.

II. PAPER STRUCTURE

This paper begins with an overview of the PHP language
and its relevant features in Section III, along with an outline
of a typical web shell and its common capabilities. The
concept of code obfuscation is also introduced, with particular
emphasis on how it is typically achieved in PHP. Several
static deobfuscation techniques are briefly discussed, along
with dynamic approaches to code analysis such sandboxing.
Section IV details how the system was designed and imple-
mented, outlining the structure and functionality of the two
main components (namely the decoder and the sandbox). The
results obtained during system testing are presented in Section
V. Finally, Section VI presents ideas for future work and
improvement.

III. BACKGROUND AND PREVIOUS WORK

The deobfuscation and dissection of PHP-based malware is
a non-trivial task with no well-defined solution. Many different
techniques and approaches can be found in the literature, each
with their own advantages and limitations. In an attempt to
evaluate these approaches, this section provides an overview of
PHP, a description of the structure and capabilities of typical
web shells, and an overview of both code obfuscation and
dissection techniques.

A. PHP Overview

PHP (the recursive acronym for PHP: Hypertext Prepro-
cessor) is a general purpose scripting language that is primarily
used for the development and maintenance of dynamic web
pages. First conceived in 1994 by Rasmus Lerdof [10], the
power and ease of use of PHP has enabled it to become
the world’s most popular server-side scripting language by
numbers. Using PHP, it is possible to transform static web
pages with predefined content into pages capable of displaying
dynamic content based on a set of parameters. Although
originally developed as a purely interpreted language, multiple
compilers have since been developed for PHP, allowing it to
function as a platform for standalone applications. Since 2001,
the reference releases of PHP have been issued and managed
by The PHP Group [11].

978-1-4799-3383-9/14/$31.00 ©2014 IEEE

B. Web Shells

Remote Access Trojans (or web shells) are small scripts
designed to be uploaded onto production servers. They are
so named because they will often masquerade as a legitimate
program or file. Once in place, these shells act as a backdoor,
allowing a remote operator to control the server as if they
had physical access to it [12]. Any server that allows a
client to upload files (usually via the HTTP POST method
or compromised FTP) is vulnerable to infection by malicious
web shells.

In addition to basic remote administration capabilities, most
web shells include a host of other features, such as access to
the local file system, keystroke logging, registry editing and
packet sniffing capabilities [3].

The structure of a web shell can vary according to its
intended function. Smaller, more limited shells are better at
avoiding detection, and are often used to secure initial access
to a system. These shells can then be used to upload a more
powerful RAT when it is less likely to get noticed.

C. Code Obfuscation

Code obfuscation is a program transformation intended to
thwart reverse engineering attempts. The resulting program
should be functionally identical to the original, but may
produce additional side effects in an attempt to disguise its
true nature.

In their seminal work detailing the taxonomy of obfuscation
transforms, Collberg et al. [13] define a code obfuscator as
a “potent transformation that preserves the observable beha-
viour of programs”. The concept of “observable behaviour” is
defined as behaviour that can be observed by the user, and
deliberately excludes the distracting side effects mentioned
above, provided that they are not discernible during normal
execution. A transformation can be classified as potent if it
produces code that is more complex than the original.

All methods of code obfuscation can be evaluated according
to three metrics [13]:

• Potency – the extent to which the obfuscated code is able
to confuse a human reader

• Resilience – the level of resistance to automated deob-
fuscation techniques

• Cost – the amount of overhead that is added to the
program as a result of the transformation

Although primarily used by authors of legitimate software as a
method of protecting technical secrets, code obfuscation is also
employed by malware authors to hide their malicious code.
Reverse engineering obfuscated malware can be tedious, as
the obfuscation process complicates the instruction sequences,
disrupts the control flow and makes the algorithms difficult
to understand. Manual deobfuscation in particular is so time-
consuming and error-prone that it is often not worth the effort.

D. Code Obfuscation and PHP

As a procedural language with object-oriented features, PHP
can be obfuscated using all of the methods detailed above. In
addition to this, the language contains several functions that

directly support the protection/hiding of code and which are
often combined to form the following obfuscation idiom:

eval(gzinflate(base64_decode($str)))

The string containing the malicious code is encoded in base64
before being compressed. At runtime, the process is reversed.
The resulting code is executed through the use of the eval()
function.

Although seemingly complex, code obfuscated in this man-
ner can easily be neutralised and analysed for potential back-
doors. Replacing the eval() function with an echo command
will display the code instead of executing it, allowing the
user to determine whether it is safe to run. This process
can be automated using PHP’s built-in function overriding
mechanisms.

E. Deobfuscation Techniques

The obfuscation methods described in the previous sec-
tions are all designed to prevent code from being reverse
engineered. Given enough time and resources, however, a
determined deobfuscator will always be able to restore the
code to its original state. This is because perfect obfuscation
is provably impossible, as is demonstrated by Barak et al. [14]
in their seminal paper “On the (Im)possibility of Obfuscating
Programs”. Collberg et al. [13] concur, postulating that every
method of code obfuscation simply “embeds a bogus program
within a real program” and that an obfuscated program es-
sentially consists of “a real program which performs a useful
task and a bogus program that computes useless information”.
Bearing this in mind, it is useful to review the techniques that
are widely employed by existing deobfuscation systems:

• Pattern matching – the detection and removal of known
bogus code segments

• Program slicing – the decomposition of a program into
manageable units that can then be evaluated individually

• Statistical analysis – the replacement of expressions that
are discovered to always produce the same value with
that value

• Partial evaluation – the removal of the static part of the
program so as to evaluate just the remaining dynamic
expressions

F. Code Dissection

The process of analysing the behaviour of a computer
program by examining its source code is known as code
dissection or semantic analysis [15]. The main goal of the
dissection process is to extract the primary features of the
source program, and, in the case of malicious software, to
neutralise and report on any undesirable actions. Sophisticated
anti-malware programs go beyond traditional signature match-
ing techniques, employing advanced methods of detection such
as sandboxing and behaviour analysis [16].

All code dissection techniques can be classified as being
either static or dynamic in nature [15]. Static analysis ap-
proaches attempt to examine code without running it. Because
of this, these approaches have the benefit of being immune to

any potentially malicious side effects. The lack of runtime
information such as variable values and execution traces does
limit the scope of static approaches, but they are still useful for
exposing the structure of code and comparing it to previously
analysed samples. Dynamic approaches to analysis extract
information about a program’s functioning by monitoring it
during execution. These approaches examine how a program
behaves and are best confined to a virtual environment such as
a sandbox so as to minimise the exposure of the host system
to infection.

IV. DESIGN AND IMPLEMENTATION

The development of a system capable of analysing PHP
shells required the design and construction of two main
components: the decoder and the sandbox. The environment
in which both of these components were developed and run is
detailed in Section IV-B. The design and implementation of the
decoder responsible for code normalisation and deobfuscation
is presented in Section IV-C and the next stage of the analytical
process, the sandbox capable of dynamic shell analysis, is
described in Section IV-D.

A. Scope and Limits

The system was originally envisioned as consisting of
three distinct components (the decoder, the sandbox, and
the reporter) that would communicate via a database. As
development progressed, it was found that a separate re-
porting component would necessitate complex communication
between itself, the other components, and the database. For
this reason, the design of the system was modified and each
component was made responsible for reporting on its own
activities. The closer coupling between the components and
the feedback mechanisms allows information relating to each
stage in the process of shell analysis to be relayed to the user
as it occurs – deobfuscation results are displayed during static
analysis, and the results of executing the shell in the sandbox
environment are displayed during dynamic analysis.

B. Architecture, Operating System and Database

While the deobfuscation and dissection of PHP shells is a
nontrivial task, neither of the stages involved in the process is
computationally intensive. It was thus not necessary to acquire
any special hardware – the system was simply developed and
run on the lab machines provided by Rhodes University.

A core part of the system is the sandbox environment, which
is designed to safely execute potentially malicious PHP code.
This component relies heavily on the Runkit Sandbox class
that forms part of PHP’s Runkit extension package [17]. Since
this extension is not available as a dynamic-link library (DLL)
or Windows binary, a decision was made to develop the system
in a Linux environment. Ubuntu (version 12.10) was chosen
because of its familiarity and status as the most popular (and
therefore most widely supported) Linux distribution. Another
welcome byproduct of Ubuntu’s popularity is the abundance of
Ubuntu-specific tutorials for procedures such as setting up web
servers, installing and configuring libraries, and setting file

permissions, all of which were useful during the development
period.

VMware Player is used to run an Ubuntu host in a virtual
machine environment. The primary reason for this is to protect
the host machine from being affected by any malicious actions
performed by the PHP shells during execution and to provide
greater control over the development environment. Although
the Runkit Sandbox class can be configured to restrict the
activities of such shells (see Section IV-D2), there is still a
risk that an incorrectly configured option or unforeseen action
on the part of the shell could corrupt the system in some
way. Backups of the virtual machine were therefore made on a
regular basis. These backups had the added benefit of acting as
a version control system that permitted rollback in the event of
system failure due to shell activity or errors that arose during
development. Traditional version control systems such as Git
would have worked well with just the source files, but since
the project involved extensive recompilation and configuration
of both PHP and Apache , it proved more expedient to backup
the entire virtual machine.

Both the decoder and the sandbox components make use of
a MySQL database for the persistent storage of web shells.
PHP scripts being analysed are stored by computing the MD5
hash of the raw code and using the resulting 32-bit string as the
primary key. MD5 was chosen because it is faster than other
common hashing algorithms such as SHA-1 and SHA-256
[18]. Each MD5 hash is then checked against the previously
analysed code stored in the database to prevent duplication.
Once the shell has been decoded, the resulting deobfuscated
and normalised version of the code is stored alongside the hash
and the raw code in the database. This deobfuscated code is
what is then executed in the sandbox environment. A flowchart
depicting the passage of a shell through the system is shown
in Figure 1.

Figure 1. The path of a web shell though the system

C. The Decoder

The first of the major components developed for the system
was the decoder, which is responsible for performing code
normalisation and deobfuscation prior to execution in the

sandbox environment. Code normalisation is the process of
altering the format of a script to promote readability and
understanding, while deobfuscation is the process of revealing
code that has been deliberately disguised [19].

The decoder is considered a static deobfuscator in that it
manipulates the code without ever executing it. The advantage
of this approach is that it suffers from none of the risks
associated with malicious software execution, such as the
unintentional inclusion of remote files, the overwriting of
system files, and the loss of confidential information. Static
analysers are however unable to access runtime information
(such as the value of a variable at any given time or the current
program state) and are thus limited in terms of behavioural
analysis.

The purpose of this component is to expose the underlying
program logic and source code of an uploaded shell by
removing any layers of obfuscation that may have been added
by the shell’s developer. This process is controlled by the
decode function, which is described in Section IV-C1. It makes
use of two core supporting functions, processEvals()
and processPregReplace(), the details of which are
provided in Sections IV-C2 and IV-C3 respectively.

In addition to performing code deobfuscation, the decoder
also attempts to extract information such as which variables
were used, which URLs were referenced and which email
addresses were discovered. Some code normalisation (or pretty
printing) is also performed on the output of the deobfuscation
process in an attempt to transform it into a more readable
form.

1) Decode(): The part of the Decoder class responsible
for removing layers of obfuscation from PHP shells is the
decode() function. It scans the code for the two func-
tions most associated with obfuscation, namely eval() and
preg_replace(), both of which are capable of arbitrarily
executing PHP code. The eval() function interprets its
string argument as PHP code, and preg_replace() can be
made to perform an eval() on the result of its search and
replace by including the deprecated ’/e’ modifier. Furthermore,
eval() is often used in conjunction with auxiliary string
manipulation and compression functions in an attempt to
further obfuscate the actual code.

Once an eval() or preg_replace() is found
in the script, either the processEvals() or the
processPregReplace() helper function is called to ex-
tract the offending construct and replace it with the code that
it represents. To deal with nested obfuscation techniques, this
process is repeated until neither of the functions is detected
in the code. Some pretty printing is then performed to get
the output into a readable format, the functions that carry out
the information gathering are called, and the decoded shell
is stored in the database alongside the raw script. The full
pseudo-code of this process is presented in Listing 1.

After both the processEvals() and
processPregReplace() functions have been called,
the formatLines() pretty printing function is used to
remove unnecessary spaces in the code that could otherwise

BEGIN
Format the code
WHILE there is still an eval or preg_replace

Increment the obfuscation depth
Process the eval(s)
Format the code
Process the preg_replace(s)
Format the code

END WHILE

Perform pretty printing
Initiate information harvesting
Store the shell in the database

END

Listing 1. Psuedo-code for the decode() function

BEGIN
WHILE there is still an eval in the script

Find the starting position of the eval
Find the end position of the eval
Remove the eval from the script
Extract the string argument
Count the number of auxiliary function
Populate the array of functions
Reverse the array

FOR every function in the reversed array
Apply the function to the argument

END FOR

Insert the deobfuscated code
END WHILE

END

Listing 2. Psuedo-code for the processEvals() function

thwart the string processing techniques used in these helper
functions.

2) ProcessEvals(): The eval() function is able to evalu-
ate an arbitrary string as PHP code, and as such is widely
used as a method of obfuscating code. The function is so
commonly exploited that the PHP group includes a warning
against its use. It is recommended that it only be used in
controlled situations, and that user-supplied data be strictly
validated before being passed to the function. [20]

Listing 2 shows the full pseudo-code of the
processEvals() function. This function is tasked
with detecting eval() constructs in a script and replacing
them with the code that they represent. String processing
techniques are used to detect the eval() constructs and
any auxiliary string manipulation functions contained within
them. The eval() is then removed from the script and its
argument is stored as a string variable. Auxiliary functions
are detected and stored in an array, which is then reversed
and each function is applied to the argument. The result of
this process is then re-inserted into the shell in place of the
original construct.

The processEvals() function was designed to be ex-
tensible. At its core is a switch statement that is used to apply

BEGIN
WHILE there is still a preg_replace

Find the starting position
Find the end position
Remove the preg_replace from the script
Extract the string arguments
Remove ’/e’ from first argument

to prevent evaluation
Perform the preg_replace
Insert the deobfuscated code

END WHILE
END

Listing 3. Psuedo-code for the processPregReplace() function

auxiliary functions to the string argument. Adding another
function to the list already supported by the system can be
achieved by simply adding a case for that function. In future,
the system could be extended to try and apply functions that it
has not encountered before or been programmed to deal with.

3) ProcessPregReplace(): The preg_replace() func-
tion is used to perform a regular expression search and replace
in PHP [21]. The danger of the function lies in the use of
the deprecated ’/e’ modifier. If this modifier is included at
the end of the search pattern, the interpreter will perform the
replacement and then evaluate the result as PHP code, but
the system prevents this from happening, as is demonstrated
below.

Listing 3 shows the full pseudo-code of the
processPregReplace() function. It is tasked with
detecting preg_replace() calls in a script and replacing
them with the code that they were attempting to obfuscate.
In much the same way as the processEvals() function,
string processing techniques are used to extract the
preg_replace() construct from the script. Its three
string arguments are then stored in separate string variables
and, if detected, the ’/e’ modifier is removed from the first
argument to prevent the resulting text from being interpreted
as PHP code. The preg_replace() can then be safely
performed and its result can be inserted back into the script.

D. The Sandbox

The second major component developed for the system
was the sandbox, which is responsible for executing the
deobfuscated code produced by the decoder in a controlled
environment. As such, it forms the dynamic part of the shell
analysis process – information about the shell’s functioning
is extracted at runtime [22]. The purpose of the sandbox
component is to log calls to functions that have the potential
to be exploited by an attacker and make the user aware of such
calls by specifying where they were made in the code. This
was achieved in part through the use of the Runkit Sandbox,
an embeddable sub-interpreter bundled with PHP’s Runkit
extension. A description of the Runkit Sandbox class and how
it was configured is given in Section IV-D2.

The part of the sandbox responsible for identifying ma-
licious functions and overriding them with functions that

perform an identical task (at least as far as the script is con-
cerned), but also record where in the code the call was made
is the redefineFunctions() function. This redefinition
process takes place before the code is executed in the Runkit
Sandbox, and is described in Section IV-D3. Finally, the shell
execution and call logging that is performed after execution is
detailed in Section IV-D4.

1) Class Outline: Unlike the decoder, which involves ex-
tensive string processing and the removal of nested obfuscation
constructs, the sandbox is mainly concerned with the config-
uration of the Runkit Sandbox, the redefinition of functions,
and the monitoring of any malicious function calls. As such,
it requires far less processing logic and dispenses with a
controlling function (like the decoder’s decode() function)
altogether.

To begin with, the deobfuscated shell is retrieved from the
temporary file created by the decoder. The outer PHP tags
are then removed, as the eval() function used to initiate
code execution inside the Runkit Sandbox requires that the
code be contained in a string without them. An array of
options is then used to instantiate a Runkit Sandbox object and
redefineFunctions() is called to override malicious
functions within the sandbox.

The callList class is an auxiliary class created to maintain
a list of potentially malicious function calls made by a shell
executing in the sandbox. A callList object is initialised by the
constructor before the shell is run, and is constantly updated
as execution progresses. Once the shell script has completed,
it is displayed in the user interface along with its output and
a list of exploitable functions that it referenced.

2) Runkit Sandbox Class: The sandbox’s core component
is the Runkit Sandbox class, an embeddable sub-interpreter
capable of providing a safe environment in which to execute
PHP code. Instantiating an object of this class creates a new
thread with its own scope and program stack, effectively sep-
arating the Runkit Sandbox from the rest of the shell analysis
system. It is this functionality that necessitated the enabling
of thread safety in both Apache and the PHP interpreter.

The behaviour of the Runkit Sandbox is controlled by an
associative array of configuration options. Using these options,
it was possible to restrict the environment to a subset of
what the primary PHP interpreter can do (i.e. prevent such
activity as network and file system access). These options
were all set proir to the initialisation of the sandbox object
and are passed to its constructor, which then configures the
environment appropriately.

3) Function Redefinition and Classification: The
redefineFunctions() function is used to override
potentially exploitable PHP functions with alternatives that
perform identical tasks, but also log the function name, where
it was called in the code, and type of vulnerability that the
function represents.

To begin with, the potentially exploitable
function is copied using the Runkit extension’s
runkit_function_copy() function to preserve its
functionality and prevent it from being overwritten completely.

The runkit_function_redefine() function is then
used to override the original function, accepting the name of
the original function, a list of new parameters, and a new
function body as its arguments. The parameters are kept the
same as those of the original function to allow it to be called
in exactly the same way, but the body is modified to echo
information about the function, which is then processed for
logging purposes. A call is then made to the function that
was copied to ensure that the script continues to execute.

Functions with the potential for exploitation can be grouped
into four main categories: command execution, code execution,
information disclosure and filesystem functions. Command
execution functions can be used to run external programs
and pass commands directly to a client’s browser, while code
execution functions (such as the infamous eval()) allow
arbitrary strings to be executed as PHP code. Information
disclosure functions are not directly exploitable, but they can
be used to leak information about the host system, thereby
assisting a potential attacker. Filesystem functions can allow
an attacker to manipulate local files and even include remote
files if PHP’s allow_url_fopen configuration option has
been set to true.

4) Shell Execution and the Logging of Function Calls: Dur-
ing the function redefinition process, the body of the original
function is modified to echo information about it. While the
shell is executing, this output is then captured by the output
handler, a function designed to process all sandbox output
without allowing it to affect the outer script. Since the output
handler deals with both the information about the function
calls and the actual output of the script executing in the
sandbox, it is necessary to differentiate between the two. For
this reason, processing tags consisting of an unlikely sequence
of characters are appended to all information pertaining to the
function calls. When the output handler receives information
enclosed in such tags, it writes the information to a file, which
is then read by the addCall() method of the callList object
to record the details of the call. Information that is not enclosed
in these tags is written to a separate file that is subsequently
output to the browser.

The function names and classifications are hard-coded into
each of the redefinition operations. As the only dynamic part
of the three pieces of information associated with a function
call, the line numbers must be determined at runtime. This is
achieved through the use of PHP’s debug_backtrace()
function, which returns a backtrace of the function call that
includes the line it was called on.

V. RESULTS

Throughout the development of the shell analysis system
the components were tested to ensure that they functioned as
intended. These ranged from the smaller unit tests designed
to test specific scenarios to comprehensive tests that involved
functional units from all parts of the system.

During the testing process, several active and fully-featured
web shells were used as inputs to the system. These shells
were sourced from a comprehensive web malware collection

<?php
echo "Hello";
eval(base64_decode("ZWNobyAiRJ5ZSI7"));

?>

Listing 4. Single-level eval() with a base64-encoded argument

<?php
echo "Hello";
echo "Goodbye";

?>

Listing 5. Expected decoder output with the script in Listing 4 as input

maintained by Insecurety Research1, which contains a variety
of bots, backdoors and other malicious scripts. This repository
is updated on a regular basis, and could theoretically be used
to automate the addition of shells to the system’s database
by simply checking the repository on a regular basis and
downloading any new shells.

A. Decoder Tests

The decoder is responsible for performing code normali-
sation and deobfuscation prior to execution in the sandbox,
with the goal of exposing the program logic of a shell. As
such, it can be declared a success if it is able to remove
all layers of obfuscation from a script (i.e., if it removes
all eval() and preg_replace() constructs). The tests
for this component progressed from scripts containing simple,
single-level eval() and preg_replace() statements to
more comprehensive tests involving auxiliary functions and
nested obfuscation contructs. Each test was designed to clearly
demonstrate a specific capability of the decoder. Finally,
several tests were performed with the fully-functional web
shells.

The most basic test of the decoder involved providing
a single eval() statement and base64-encoded argument
as input and recording whether it was correctly identified,
extracted and replaced with the code that it was obscuring.
The input script is shown in Listing 4.

To create the input script, a simple echo() statement
(with “Goodbye” included as an argument) was encoded using
PHP’s base64_encode() function. The expected output
would therefore be a script in which the eval() construct
has been replaced by this echo() statement, as is shown in
Listing 5. The decoder output matched this expected output
exactly.

The testing of the decoder proved largely successful. It
was able to correctly identify, process and replace both
eval() and preg_replace() constructs, provided that
their arguments were all explicit strings. This limitation is
associated with all static deobfuscation systems, and can only

1http://insecurety.net/?p=96

<?php
exec("whoami");
echo getlastmod();

?>

Listing 6. Script calling three exploitable functions

Sandbox Results:

Line 1 - Potentially malicious call to:
Command_Execution function "exec"

Line 2 - Potentially malicious call to:
Information_Disclosure function "getlastmod"

Listing 7. Sandbox results with the script in Listing 6 as input

be overcome by incorporating runtime information obtained
from a dynamic analyser.

The decoder was also able to process auxiliary string
manipulation functions contained within eval() statements
and could remove nested layers of obfuscation. Multiple
combinations of these functions were successfully tested, with
the obfuscation depth ranging from one to twelve levels.
All information gathering functions were able to extract the
required data using regular expressions, and a fully-functional
derivative of the c99 web shell was successfully decoded by
the system.

B. Sandbox Tests

The sandbox is responsible for executing potentially ma-
licious scripts in a secure environment, with the goal of
identifying calls to exploitable PHP functions. As such, it can
be declared a success if it is able to classify and redefine
the aforementioned functions and report on where they were
called. The tests for this component included determining
whether functions could be correctly identified, copied and
overridden, and whether example PHP scripts could be exe-
cuted successfully within the sandbox. Finally, several fully-
functional web shells were executed in the sandbox to deter-
mine its feasibility as a tool for code dissection.

Functions in the sandbox are overridden to report informa-
tion about the name of the function and where it was called.
The type of vulnerability that they represent should also be
recorded. To test this, a script containing three functions (one
each from the Command Execution, Information Disclosure
and Code Execution classes of functions described in Section
IV-D3) was constructed and input to the sandbox. This script
is shown in Listing 6.

As expected, the sandbox identified all three of these func-
tions as being potentially exploitable, and correctly classified
each of them. The sandbox results are shown in Listing 7.

The testing of the sandbox proved to be far more complex
and unpredictable. Shells containing malformed CSS and
JavaScript failed to run at all, and modifications had to be

made to some shells to ensure that certain functions were
called even if their required arguments were not present. De-
spite this, testing of the individual elements proved successful
– exploitable functions were correctly copied and redefined,
and calls to these functions were recorded and displayed as
intended. Furthermore, shells containing a combination of PHP
and HTML were successfully analysed in a dynamic envi-
ronment, and any attempts by these shells to call exploitable
functions were recorded and correctly classified.

VI. SUMMARY

The two primary goals of this research were to create a
sandbox-based environment capable of safely executing and
dissecting potentially malicious PHP code and a decoder
component for performing normalisation and deobfuscation of
input code prior to execution in the sandbox environment. Both
of these undertakings proved to be successful for the most
part. Section V-A demonstrated how the decoder was able to
correctly expose code hidden by multiple nested eval() and
preg_replace() constructs and extract pertinent informa-
tion from the code. Similarly, the sandbox environment proved
effective at classifying and reporting on calls to potentially
exploitable functions (see Section V-B).

As a proof of concept, the research ably demonstrated that
the sandbox-based approach to malware analysis, combined
with a decoder capable of code deobfuscation and normalisa-
tion, is a viable one. Despite this, the system was found to have
some limitations: the decoder was only able to deal with obfus-
cation contructs such as eval() and preg_replace() if
they contained only explicit string arguments, and performed
no analysis of the shell information after it was extracted.
The sandbox environment proved unpredictable, occassionally
failing to execute real-world shells that employed a mixture of
CSS and JavaScript in addition to PHP and HTML. Although
these limitations make the system unsuitable for use in a
production environment, they do not detract from the results
proving the feasibility of the approach itself.

VII. FUTURE WORK

A. System Structure

The system is currently composed of two core components,
namely the decoder and the sandbox. Each of these compo-
nents represents a different approach to malware analysis – the
decoder engages in static code analysis, and the sandbox per-
forms dynamic code analysis. One of the major disadvatages
of the decoder is that it is unable to deobfuscate constructs that
contain variables as arguments, as it has no way of knowing
which values these variables might represent. As a component
that performs dynamic analysis, the sandbox has access to
this information. In future it would therefore be useful to
implement a closer coupling between the two components to
allow them to share this information instead of working in
isolation to allow for a more comprehensive code analysis
system.

B. Implementation Language

The current system was implemented using PHP because
of the existence of the Runkit Sandbox class, which forms
a core part of the sandbox component. If the system were
to be expanded, it would be beneficial to recode it in a
language more suited to larger development projects, such as
Python, which supports true object orientation and multiple
inheritance, and is more scalable as a result of its use of
modules as opposed to include statements. The core of the
sandbox component would still have to use PHP and the
Runkit Sandbox for code execution, but the decoder and all
information gathering and inference logic could be converted
to Python scripts.

C. Similarity Analysis and a Webshell Taxonomy

A useful extension to the current system would be to include
a component capable of determining how different shells relate
to each other. This would be responsible for the following two
tasks:

• Code classification based on similarity to previously
analysed samples. This would draw on existing work in
the field of similarity analysis [23], [24] and could make
use of the information gathered by the decoder. Fuzzy
hashing algorithms such as ssdeep could also be used to
obtain a measure of the similarity between shells [25].

• The construction of a taxonomy tracing the evolution
of popular web shells such as c99, r57, b374k and
barc0de [26] and their derivatives. This would involve the
implementation of several tree-based structures that have
the aforementioned shells as their roots and are able to
show the mutation of the shells over time. Such a task
would build on research into the evolutionary similarity
of malware already undertaken by Li et al. [27].

REFERENCES

[1] K. Tatroe, Programming PHP. O’Reilly & Associates Inc, 2005.
[2] N. Cholakov, “On some drawbacks of the PHP platform,” in

Proceedings of the 9th International Conference on Computer Systems
and Technologies and Workshop for PhD Students in Computing, ser.
CompSysTech ’08. New York, NY, USA: ACM, 2008, pp. 12:II.7–12:2.
[Online]. Available: http://doi.acm.org/10.1145/1500879.1500894

[3] M. Landesman. (2007, March) Malware Revolution: A Change in
Target. Microsoft. [Online]. Available: http://technet.microsoft.com/
en-us/library/cc512596.aspx

[4] E. Kaspersky. (2011, October) Number of the Month: 70K per day.
Kaspersky Labs. Accessed on 1 March 2013. [Online]. Available: http:
//eugene.kaspersky.com/2011/10/28/number-of-the-month-70k-per-day/

[5] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant,
“Semantics-aware malware detection,” in 2005 IEEE Symposium on
Security and Privacy, May 2005, pp. 32–46.

[6] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A
semantics-based approach to malware detection,” SIGPLAN Notices,
vol. 42, no. 1, pp. 377–388, January 2007. [Online]. Available:
http://doi.acm.org/10.1145/1190215.1190270

[7] A. Moser, C. Kruegel, and E. Kirda, “Limits of Static Analysis for
Malware Detection,” in Twenty-Third Annual Computer Security Appli-
cations Conference, December 2007, pp. 421–430.

[8] M. Christodorescu and S. Jha, “Testing malware detectors,” SIGSOFT
Softw. Eng. Notes, vol. 29, no. 4, pp. 34–44, Jul. 2004. [Online].
Available: http://doi.acm.org/10.1145/1013886.1007518

[9] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding Malware
Analysis Using Conditional Code Obfuscation,” in NDSS, 2008.

[10] L. Argerich, Professional PHP4, ser. Professional Series. Wrox
Press, 2002. [Online]. Available: http://books.google.co.za/books?id=
gcD3NX92fucC

[11] M. Doyle, Beginning PHP 5.3. Wiley, 2011. [Online]. Available:
http://books.google.co.za/books?id=1TcK2bIJlZIC

[12] R. Kazanciyan. (2012, December) Old Web Shells, New Tricks.
Mandiant. [Online]. Available: https://www.owasp.org/images/c/
c3/ASDC12-Old_Webshells_New_Tricks_How_Persistent_Threats_
haverevived_an_old_idea_and_how_you_can_detect_them.pdf

[13] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[14] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang, “On the (im)possibility of obfuscating programs,” in
Advances in Cryptology-CRYPTO 2001. Springer, 2001, pp. 1–18.

[15] D. Binkley, “Source Code Analysis: A Road Map,” in 2007 Future
of Software Engineering, ser. FOSE ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 104–119. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.27

[16] G. Wagener, R. State, and A. Dulaunoy, “Malware behaviour analysis,”
Journal in Computer Virology, vol. 4, no. 4, pp. 279–287, 2008.
[Online]. Available: http://dx.doi.org/10.1007/s11416-007-0074-9

[17] The PHP Group. (2013, May) Runkit Sandbox. Accessed on 27 May
2013. [Online]. Available: http://php.net/manual/en/runkit.sandbox.php

[18] W. Dai. (2009, March) Crypto++ 5.6.0 Benchmarks. Accessed
on 26 October 2013. [Online]. Available: http://www.cryptopp.com/
benchmarks.html

[19] M. Preda and R. Giacobazzi, “Semantic-Based Code Obfuscation by
Abstract Interpretation,” in Automata, Languages and Programming,
ser. Lecture Notes in Computer Science, L. Caires, G. Italiano,
L. Monteiro, C. Palamidessi, and M. Yung, Eds. Springer Berlin
Heidelberg, 2005, vol. 3580, pp. 1325–1336. [Online]. Available:
http://dx.doi.org/10.1007/11523468_107

[20] The PHP Group. (2013, May) Eval. Accessed on 16 October 2013.
[Online]. Available: http://php.net/manual/en/function.eval.php

[21] ——. (2013, May) Preg Replace. Accessed on 16 October 2013.
[Online]. Available: http://php.net/manual/en/function.preg-replace.php

[22] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” Security & Privacy, IEEE, vol. 5,
no. 2, pp. 32–39, 2007.

[23] A. Walenstein and A. Lakhotia, “The Software Similarity Problem
in Malware Analysis,” in Duplication, Redundancy, and Similarity in
Software, ser. Dagstuhl Seminar Proceedings, R. Koschke, E. Merlo, and
A. Walenstein, Eds., no. 06301. Dagstuhl, Germany: Internationales
Begegnungs- und Forschungszentrum Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007. [Online]. Available: http://drops.dagstuhl.de/
opus/volltexte/2007/964

[24] A. Gupta, P. Kuppili, A. Akella, and P. Barford, “An empirical study
of malware evolution,” in Communication Systems and Networks and
Workshops, 2009. COMSNETS 2009. First International, 2009, pp. 1–
10.

[25] J. Kornblum. (2013, July) Context Triggered Piecewise Hashes.
Accessed on 26 October 2013. [Online]. Available: http://ssdeep.
sourceforge.net/

[26] T. Moore and R. Clayton, “Evil Searching: Compromise and
Recompromise of Internet Hosts for Phishing,” in Financial
Cryptography and Data Security, ser. Lecture Notes in Computer
Science, R. Dingledine and P. Golle, Eds. Springer Berlin
Heidelberg, 2009, vol. 5628, pp. 256–272. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03549-4_16

[27] J. Li, J. Xu, M. Xu, H. Zhao, and N. Zheng, “Malware obfuscation
measuring via evolutionary similarity,” in First International Conference
on Future Information Networks, 2009, pp. 197–200.

http://doi.acm.org/10.1145/1500879.1500894
http://technet.microsoft.com/en-us/library/cc512596.aspx
http://technet.microsoft.com/en-us/library/cc512596.aspx
http://eugene.kaspersky.com/2011/10/28/number-of-the-month-70k-per-day/
http://eugene.kaspersky.com/2011/10/28/number-of-the-month-70k-per-day/
http://doi.acm.org/10.1145/1190215.1190270
http://doi.acm.org/10.1145/1013886.1007518
http://books.google.co.za/books?id=gcD3NX92fucC
http://books.google.co.za/books?id=gcD3NX92fucC
http://books.google.co.za/books?id=1TcK2bIJlZIC
https://www.owasp.org/images/c/c3/ASDC12-Old_Webshells_New_Tricks_How_Persistent_Threats_haverevived_an_old_idea_and_how_you_can_detect_them.pdf
https://www.owasp.org/images/c/c3/ASDC12-Old_Webshells_New_Tricks_How_Persistent_Threats_haverevived_an_old_idea_and_how_you_can_detect_them.pdf
https://www.owasp.org/images/c/c3/ASDC12-Old_Webshells_New_Tricks_How_Persistent_Threats_haverevived_an_old_idea_and_how_you_can_detect_them.pdf
http://dx.doi.org/10.1109/FOSE.2007.27
http://dx.doi.org/10.1007/s11416-007-0074-9
http://php.net/manual/en/runkit.sandbox.php
http://www.cryptopp.com/benchmarks.html
http://www.cryptopp.com/benchmarks.html
http://dx.doi.org/10.1007/11523468_107
http://php.net/manual/en/function.eval.php
http://php.net/manual/en/function.preg-replace.php
http://drops.dagstuhl.de/opus/volltexte/2007/964
http://drops.dagstuhl.de/opus/volltexte/2007/964
http://ssdeep.sourceforge.net/
http://ssdeep.sourceforge.net/
http://dx.doi.org/10.1007/978-3-642-03549-4_16

	I Introduction
	II Paper Structure
	III Background and Previous Work
	III-A PHP Overview
	III-B Web Shells
	III-C Code Obfuscation
	III-D Code Obfuscation and PHP
	III-E Deobfuscation Techniques
	III-F Code Dissection

	IV Design and Implementation
	IV-A Scope and Limits
	IV-B Architecture, Operating System and Database
	IV-C The Decoder
	IV-C1 Decode()
	IV-C2 ProcessEvals()
	IV-C3 ProcessPregReplace()

	IV-D The Sandbox
	IV-D1 Class Outline
	IV-D2 Runkit Sandbox Class
	IV-D3 Function Redefinition and Classification
	IV-D4 Shell Execution and the Logging of Function Calls

	V Results
	V-A Decoder Tests
	V-B Sandbox Tests

	VI Summary
	VII Future Work
	VII-A System Structure
	VII-B Implementation Language
	VII-C Similarity Analysis and a Webshell Taxonomy

	References

