
The role of triggers in database forensics

Werner K. Hauger1 and Martin S. Olivier2
Computer Science Department

University of Pretoria
Pretoria, South Africa
1 whauger@gmail.com
2 molivier@cs.up.ac.za

Abstract—An aspect of database forensics that has not received
much attention in the academic research community yet is the
presence of database triggers. Database triggers and their
implementations have not yet been thoroughly analysed to
establish what possible impact they could have on digital forensic
analysis methods and processes. Conventional database triggers
are defined to perform automatic actions based on changes in the
database. These changes can be on the data level or the data
definition level. Digital forensic investigators might thus feel that
database triggers do not have an impact on their work. They are
simply interrogating the data and metadata without making any
changes. This paper attempts to establish if the presence of
triggers in a database could potentially disrupt, manipulate or
even thwart forensic investigations. The database triggers as
defined in the SQL standard were studied together with a
number of database trigger implementations. This was done in
order to establish what aspects might have an impact on digital
forensic analysis. It is demonstrated in this paper that some of the
current database forensic analysis methods are impacted by the
possible presence of certain types of triggers in a database.
Furthermore, it finds that the forensic interpretation and
attribution processes should be extended to include the handling
and analysis of database triggers if they are present in a
database.

Keywords-database forensics; database triggers; digital forensic
analysis; methods; processes

I. INTRODUCTION
Forensic science, or simply forensics, is today widely used

by law enforcement to aid them in their investigations of
crimes committed. Forensic science technicians, which are
specifically trained law enforcement officials, perform a
number of forensically sound steps in the execution of their
duties. These steps include the identification, collection,
preservation and analysis of physical artefacts and the reporting
of results. One critical part is the collection and preservation of
physical artefacts. The collection needs to be performed in such
a manner that the artefacts are not contaminated. The artefacts
then need to be preserved in such a way that their integrity is
maintained. The reason why this part is so critical is so that any
evidence gained from the analysis of these artefacts can not be
contested. The evidence found would be used to either
implicate or exonerate any involved parties. Any doubt about
the integrity of the artefacts collected could lead to the
evidence being dismissed or excluded from legal proceedings.

In digital forensics these steps are more commonly referred
to as processes. There have been a number of process models
developed to guide the digital forensic investigator [1]. The
digital forensic process that matches the collection and
preservation step in the physical world is the acquisition
process. Traditionally, this process involves the making of
exact digital copies of all relevant data media identified [19].
However, database forensics needs to be performed on
information systems that are becoming increasingly complex.
Several factors influence the way that data is forensically
acquired and how databases are analysed. They include data
context, business continuity, storage architecture, storage size
and database models. These factors and their influence on
database forensics are examined further in Section II.

Database triggers are designed to perform automatic actions
based on events that occur in a database. There is a wide
variety of actions that can be performed by triggers. These
actions can potentially have an effect on data inside and outside
of the DBMS. Thus triggers and the actions they perform are
forensically important. This was already recognised by
Khanuja and Adane in a framework for database forensic
analysis they proposed [4].

The effect that triggers can have on data raises the concern
that they could compromise the integrity of the data being
investigated. Could triggers due to their nature in combination
with the way databases are forensically analysed lead to the
contamination of the data that is being analysed? Another
concern revolves around the automatic nature of actions
performed by triggers. Can the current attribution process
correctly identify which party is responsible for which
changes?

This paper attempts to establish if these concerns around
triggers are justified. The database trigger is defined in the
ISO/IEC 9075 SQL standard [5]. Triggers were first introduced
in the 1999 version of the standard and subsequently updated in
the 2008 version. The specification could thus be examined to
determine on a theoretical basis if there is reason for concern.
However, the standard is merely used as a guideline by DBMS
manufacturers and there is no requirement to conform to the
standard. Certain manufacturers also use feature engineering to
gain a competitive advantage in the marketplace [6]. They
might implement additional triggers based on actual feature
requests from high profile clients. Standard triggers might be
enhanced or other additional triggers implemented based on

978-1-4799-3383-9/14/$31.00 ©2014 IEEE

perceived usefulness by the manufacturers. These features
could be used to overcome certain limitations in their DBMS
implementations. It is therefore necessary to study actual
trigger implementations, rather than the standard itself.

There are thousands of database implementations available
and to investigate the trigger implementations of all those
databases that use triggers would be prohibitive. Thus, the
database trigger implementations of a few proprietary and
open-source DBMSs were chosen. The DBMSs investigated
were Oracle, Microsoft SQL Server, Mysql, PostgreSQL and
DB2. These selected relational database management systems
(RDBMS) are widely adopted in the industry. Their dominance
in the market means that they would be encountered fairly
often by the general digital forensic investigator. These
RDBMSs are also the most popular based on the number of
web pages on the Internet according to solid IT's ranking
method [7]. The official documentation of these RDBMSs was
used to study their trigger implementations. The latest
published version of the documentation was retrieved from the
manufacturer's website [8][9][10][11][12]. At the time of the
investigation the latest versions available were as follows:
Oracle 11.2g, Microsoft SQL Server 2012, Oracle Mysql 5.7,
PostgreSQL 9.3 and IBM DB2 10.

Section II provides the database forensic background
against which database triggers will be investigated. Section III
describes the database trigger implementations investigated and
is divided into four sub-sections: Firstly the triggers defined in
the standard were explored. Then the implementations of the
standard triggers by the selected DBMSs were examined.
Thereafter, other non-standard triggers that some DBMSs have
implemented were looked at. For each type of trigger the
question was asked as to how the usage of that particular
trigger could impact the forensic process or method. Lastly it
was established on which objects triggers could be applied.
Section IV asks whether the current forensic processes would
correctly identify and attribute actions if triggers were used by
attackers to commit their crimes. Through the use of a few
hypothetical examples as to how triggers could be used by
attackers to commit their crimes, this question was
investigated. Section V concludes this paper and contemplates
further research.

II. BACKGROUND
Historically, digital forensics attempts to collect and

preserve data media in a static state, which is referred to as
dead acquisition [19]. Typically, this process starts with
isolating any device that is interacting with a data medium by
disconnecting it from all networks and power sources. Then the
data medium is disconnected or removed from the device and
connected via a write-blocker to a forensic workstation. The
write-blocker ensures that the data medium cannot be
contaminated while being connected to the forensic
workstation. Software is then used to copy the contents to a
similar medium or to an alternative medium with enough
capacity. Hashing is also performed on the original content
with a hash algorithm such as MD5 or SHA-1 [19]. The hashes
are used to prove that the copies made are exact copies of the
originals and have not been altered. The hashes are also used
throughout the analysis process to confirm the integrity of the

data being examined. Once the copies have been made, there is
no more need for the preservation of the originals [2].
However, if the data being examined is to be used to gather
evidence in legal proceedings, some jurisdictions may require
that the originals are still available.

A different approach is to perform live acquisition. This
involves the collection and preservation of both volatile data
(e.g. CPU cache, RAM, network connections) and non-volatile
data (e.g. files). Since the acquisition is performed while the
system is running, there are some risks that affect the reliability
of the acquired data. These risks however can be mitigated by
employing certain countermeasures [20].

In today's modern information systems there are several
instances where it has become necessary to perform live
acquisition. Firstly, in a permanently switched-on and
connected world, the context around the imaged data may be
required to perform the forensic analysis. This includes volatile
items such a running processes, process memory, network
connections and logged on users [19]. One area where the
context gained from live acquisition is particularly useful is
when dealing with possibly encrypted data. This is because the
encrypted data might already be open on a running system and
the encryption keys used cached in memory [21]. The
increasing prevalence of encryption usage to protect data by
both individuals and organisations increases the need for more
live acquisitions to be performed.

Another instance where live acquisition is performed is
when business continuity is required. For many organisations
information systems have become a critical part of their
operations. The seizure or downtime of such information
systems would lead to great financial losses and damaged
reputations. The shutdown of mission critical systems might
even endanger human life. During forensic investigations, such
important information systems can thus no longer be shutdown
to perform imaging in the traditional way [19].

The complex storage architecture of today's information
systems also necessitates the use of live acquisition techniques.
To ensure availability, redundancy, capacity and performance,
single storage disks are no longer used for important
applications and databases. At least a redundant array of
independent disks (RAID) or a full blown storage area network
(SAN) is used. Both of these technologies group a variable
number of physical storage disks together using different
methodologies. They present a logical storage disk to the
operating system that is accessible on the block-level.

In such a storage configuration a write-blocker can no
longer be efficiently used. There simply may be too many disks
in the RAID configuration to make it cost and time effective to
image them all [19]. In the case of a SAN, the actual physical
disks holding the particular logical disk might not be known, or
might be shared among multiple logical disks. These other
logical disks may form part of other systems that are unrelated
to the application or database system and should preferably not
be affected. Attaching the disks in a RAID configuration to
another controller with the same configuration can make the
data appear corrupt and impossible to access. RAID controller
and server manufacturers only support RAID migration

between specific hardware families and firmware versions. The
same would hold true for the imaged disks as well.

While it is still technically possible to image the logical
disk the same way as a physical disk, it may not be feasible to
do so either. Firstly the size of the logical disk may be bigger
than the disk capacity available to the forensic investigator
[24]. Secondly the logical disk may hold a lot of other
unrelated data, especially in a virtualised environment. Lastly
organisations may be running a huge single application or
database server containing many different applications and
databases. Due to hardware, electricity and licensing costs, the
organisation may prefer this to having multiple smaller
application or database servers.

Lastly, database systems have their own complexities that
affect digital forensic investigations. The models used by the
database manufacturers are tightly integrated into their
database management systems (DBMS) and are many times of
a proprietary nature. Reverse engineering is purposely being
made difficult to prevent their intellectual property being used
by a competitor. Sometimes reverse engineering is explicitly
prohibited in the licensing agreements of the usage of the
DBMSs. To forensically analyse the raw data directly is thus
not very easy, cost-effective or always possible. The data also
needs to be analysed in conjunction with the metadata because
the metadata not only describes how to interpret the data, but
can also influence the actual seen information [3]. The usage of
the DBMS itself, and by extension the model it contains, has
become the necessary approach to forensically analyse
databases.

The database analysis can be performed in two ways: an
analysis on site or an analysis in a clean laboratory
environment. On site the analysis is performed on the actual
system running the data base. In the laboratory a clean copy of
the DBMS with the exact same model as used in the original
system is used to analyse the data and metadata acquired [3].
Both ways can be categorised as live analysis due to being
performed on a running system. In the first instance the real
system is used, while in the second a resuscitated system in a
more controlled environment is used e.g. single user, no
network connection.

Due to all these complexities associated with applications
and particularly databases, live acquisition is the favoured
approach when dealing with an information system of a
particular size and importance. Fowler documents such a live
acquisition in a real world forensic investigation he performed
on a Microsoft SQL Server 2005 database [23]. It should be
noted that both the operating system and the DBMS are used to
access and acquire data after being authenticated. To preserve
the integrity of the acquired data, he uses his own clean tools
that are stored on a read-only medium [20]. However, the mere
accessing of the system will already cause changes to the data,
thus effectively contaminating it before it can be copied. Since
all the operations performed during the acquisition are
documented, they can be accounted for during a subsequent
analysis. Hence, this kind of contamination is acceptable as it
can be negated during analysis.

Against this background of how forensic acquisition and
analysis is performed on a database system, triggers are
examined.

III. TRIGGER IMPLEMENTATION
This section firstly examines what types of triggers are

defined in the standard and how they have been implemented
in the DBMSs surveyed. It then looks at other types of triggers
that some DBMSs have implemented. Lastly, the database
objects that triggers can be applied to, are examined.
Throughout the section, the possible impact on database
forensics is explored.

A. Definition

The ISO/IEC 9075 standard part 2: Foundation defines a
trigger as an action or multiple actions taking place as a result
of an operation being performed on a certain object. The
operations are defined as being changes made to rows by
inserting, updating or deleting them. Therefore three trigger
types are being defined: the insert trigger, the delete trigger and
the update trigger. The action can take place immediately
before the operation or immediately after the operation. A
trigger is thus defined as a BEFORE trigger or an AFTER
trigger. The action can take place only once, or it can occur for
every row that the operation manipulates. The trigger is thus
further defined as a statement-level trigger or as a row-level
trigger.

B. Standard triggers

The first aspect that was looked at was the conformance to
the ISO/IEC 9075 SQL standard regarding the type of triggers.
All DBMSs surveyed implement the three types of data
manipulation language (DML) triggers defined. The only
implementations that match the specification exactly in terms
of trigger types are those of Oracle and PostgreSQL. They have
implemented all combinations of BEFORE/AFTER/Statement-
level/Row-level triggers. The others either place restrictions on
the combinations or implement only a subset of the definition
from the specification. DB2 has no BEFORE Statement trigger,
but all the other combinations are implemented. SQL Server
does not implement BEFORE triggers at all. Mysql does not
have any statement-level triggers.

Since all three types of DML triggers defined rely on
changes of data taking place i.e. either the insertion of new data
or the changing or removal of existing data, the standard
methods employed by the forensic analyst are not impacted.
These methods are specifically chosen because they do not
cause any changes and can be used to create proof that in fact
no changes have occurred.

Some members of the development community forums
have expressed the need for a select trigger [13]. A select
trigger would be a trigger that fires when a select operation
takes place on the object on which it is defined. None of the
DBMSs surveyed implement such a select trigger. Microsoft
however is working on such a trigger and its researchers have
presented their work already [14]. Oracle on the other hand has
created another construct that can be used to perform one of the
tasks that the developers want to perform with select triggers:

manipulate SQL queries that are executed. The construct
Oracle has created is called a group policy. It transparently
applies the output from a user function to the SQL executed on
the defined object for a certain user group. The function can be
triggered by selecting, inserting, updating or deleting data. The
good news for the forensic analyst is that these functions will
not be invoked for users with system privileges. So as long as
the forensic analyst uses a database user with the highest
privileges, the group policies will not interfere with his
investigations.

The existence of a select trigger would have greatly
impacted on the standard methods used by the database
forensic analyst. One of the methods used to gather data and
metadata for analysis is the execution of SQL select statements
on system and user database objects such as tables and views.
This would have meant that an attacker could have used such a
trigger to hide or even worse destroy data. A hacker could use
select triggers to booby-tap his root kit. By placing select
triggers on sensitive tables used by him, he could initiate the
cleanup of incriminating data or even the complete removal of
his root kit should somebody become curious about those
tables and start investigating.

C. Non-standard triggers

The second aspect that was investigated was the additional
types of triggers that some DBMSs define. The main reason for
the existence of such extra trigger types is to allow developers
to build additional and more specialised auditing and
authentication functionality, than what is supplied by the
DBMS. However that is not the only application area and
triggers can be used for a variety of other purposes. For
example instead of having an external application monitoring
the state of certain elements of the database and performing an
action once certain conditions become true, the database itself
can initiate these actions.

The non-standard triggers can be categorised into two
groups: data definition language (DDL) triggers and other non-
data triggers. From the DBMSs investigated, only Oracle and
SQL Server provide non-standard triggers.

1) DDL triggers
The first group of non-standard triggers are the DDL

triggers. These are triggers that fire on changes made to the
data dictionary with DDL SQL statements e.g. create, drop,
alter etc. Different DBMSs define different DDL SQL
statements that can trigger actions. SQL Server has a short list
that contains just the basic DDL SQL statements. Oracle has a
more extensive list and also a special DDL indicator that refers
to all of them combined. Since DDL SQL statements can be
applied to different types of objects in the data dictionary, these
triggers are no longer defined on specific objects. They are
rather defined on a global level firing on any occurrence of the
event irrespective of the object being changed. Both SQL
Server and Oracle allow the scope to be set to a specific
schema or the whole database.

These triggers once again rely on data changes being made
in the database to fire and thus pose no problem of interference
during the forensic investigation.

2) Non-data triggers
The second group of non-standard triggers are non-data

triggers. These are triggers that fire on events that occur during
the normal running and usage of a database. Since these
triggers do not need any data changes to fire, they potentially
have the biggest impact on the methods employed by the
forensic analyst. Fortunately the impact is isolated because
only a few DBMSs have implemented such triggers.

Both SQL Server and Oracle define a login trigger. This
trigger fires when a user logs into the database. SQL Server's
login trigger can be defined to perform an action either before
or after the login. Authentication however will be performed
first in both cases, meaning only authenticated users can
activate the trigger. That means the login trigger can be used to
perform conditional login or even completely block all logins.
An attacker could use this trigger to easily perform a denial of
service (DoS) attack. Many applications today use some kind
of database connection pool that dynamically grows or shrinks
depending on the load of the application. Installing a trigger
that prevents further logons to the database would cripple the
application during high load. It would be especially bad after
an idle period where the application would have reduced its
connections to the minimum pool size.

Oracle's login trigger is only performing its action after
successful login. Unfortunately that distinction does not make a
significant difference and this trigger can also be used to
perform conditional login or completely prevent any login.
That is because the content of the trigger is executed in the
same transaction as the triggering action [16]. Should any error
occur in either the triggering action or the trigger itself, then
the whole transaction will be rolled back. So simply raising an
explicit error in the login trigger will reverse the successful
login.

Microsoft has considered the possibility of complete
lockout and subsequently created a special method to login to a
database that bypasses all triggers. Oracle on the other hand has
made the complete transaction rollback not applicable to users
with system privileges or the owners of the schemas to prevent
a complete lockout. Both SQL Server and Oracle also have a
special kind of single-user mode the database can be put into,
that will also disable all triggers [15][16].

A hacker could use this trigger to check if a user with
system privileges, that has the ability to look past the root kits
attempts to hide itself, has logged in. Should such a user log in,
he can remove the root kit almost completely, making
everything seem normal to the user even on deeper inspection.
He can then use Oracle's BEFORE LOGOFF trigger to re-
insert the root kit, or use a scheduled task [17] that the root kit
hides to re-insert itself after the user with system privileges has
logged off.

Another non-data trigger defined by Oracle is the server
error trigger. This trigger fires when non-critical server errors
occur and could be used to send notifications or perform
actions that attempt to solve the indicated error.

The final non-data triggers defined by Oracle only have a
database scope due to their nature: the database role change
trigger, the database startup trigger and the database shutdown

trigger. The role change trigger refers to Oracle's proprietary
Data Guard product that provides high availability by using
multiple database nodes. This trigger could be used to send
notifications or to perform configuration changes relating to the
node failure and subsequent switch over.

The database startup trigger fires when the database is
opened after successfully starting up. This trigger could be
used to perform certain initialisation tasks that do not persist
and subsequently do not survive a database restart. The
database shutdown trigger fires before the database is shut
down and could be used to perform cleanup task before
shutting down. These last two triggers can be similarly
exploited as the login and logoff triggers by a hacker to manage
and protect his root kit.

D. Trigger objects

The third aspect that was investigated was which database
objects the DBMSs allowed to have database triggers. The
standard generically defines that triggers should operate on
objects, but implies that the objects have rows. It was found
that all DBMSs allow triggers to be applied to database tables.
Additionally most DBMSs allow triggers to be applied to
database views with certain varying restrictions. Only Mysql
restricts triggers to be applied to tables only.

None of the DBMSs allow triggers to be applied to system
tables and views. Triggers are strictly available only on user
tables and views. Additionally there are restrictions to the kind
of user table and user views that triggers can be applied to.

This is good news for forensic investigators, since they are
very interested in the internal objects that form part of the data
dictionary. However there is a move by some DBMSs to
provide system procedures and views to display the data from
the internal tables [22]. To protect these views and procedures
from possible user changes they have been made part of the
data dictionary. The ultimate goal seems to be to completely
remove direct access to internal tables of the data dictionary.

This might be unsettling news for forensic investigators as
they prefer to access any data as directly as possible to ensure
the integrity of the data. It will then become important to not
only use a clean DBMS, but also a clean data dictionary (at
least the system parts). Alternatively the forensic investigator
first needs to show that the data dictionary is uncompromised
by comparing it to a known clean copy [11]. Only then can he
use the functions and procedures provided by the data
dictionary.

IV. IDENTITY AND ATTRIBUTION
The login trigger example brings up another interesting

problem. Once the forensic investigator has pieced together all
the actions that occurred at the time when the user with system
privileges was logged in, he will attribute all the actions to this
specific user. This is because all the actions will be tied to him
by the audit information. Without looking at triggers, the
investigator will miss, that the particular user was completely
unaware of certain actions that happened, even though they
were triggered and executed with his credentials.

Consider the following example of the salami attack
technique: An insurance company pays its brokers commission
for each active policy they have sold. The commission amount
is calculated according to some formula and the result stored in
a commission table with five decimal precision. At the end of
the month, a payment process adds all the individual
commission amounts together per broker and stores the total
amount rounded to two decimals in a payment table. The data
from the payment table is then used to create payment
instructions for the bank.

Now an attacker could add a BEFORE trigger on the
insert/update/delete operations of the commission table which
would get executed before the insert/update/delete operation
happens. In the trigger, the attacker could truncate the
commission amount to two digits; write the truncated portion
into the payment table against a dormant broker and the two
decimal truncated amounts into the commission table. The
banking details of the dormant broker would be changed to an
account the attacker controlled and the contact information
removed or changed to something invalid so that the real
broker would not receive any notification of the payment.

When the forensic investigator gets called in after the
fraudulent bank instruction gets discovered, he will find either
of two scenarios: The insurance company has an application
that uses database user accounts for authentication or an
application that has its own built-in authentication mechanism
and uses a single database account for all database connections.
In the first case, he will discover from the audit logs that
possibly all users that have access in the application to manage
broker commissions, have at some point updated the fraudulent
bank instruction. Surely not all employees are working together
to defraud the company. In the second case, the audit logs will
attribute all updates to the fraudulent bank instruction to the
single account the application uses.

In both cases it would now be worthwhile to query the data
dictionary for any triggers that have content that directly or
indirectly refers to the payment table. Both Oracle and SQL
Server have audit tables that log trigger events. If the trigger
events correlate with the updates of the payment table as
indicated in the log files, the investigator will have proof that
the trigger in fact performed the fraudulent payment instruction
updates. He can now move on to determine when and by whom
the trigger was created. Should no trigger be found, the
investigator can move on to examining the application and its
interaction with the database.

Another more prevalent crime that gets a lot of media
attention is the stealing of banking details of customers of large
companies [18]. The most frequent approach is the breach of
the IT infrastructure of the company and the large scale
download of customer information including banking details.
This normally takes place as a single big operation that gets
discovered soon afterwards. A more stealthy approach would
be the continuous leaking of small amounts of customer
information over a long period.

Triggers could be used quite easily to achieve that at the
insurance company in our previous example. The attacker can
add an AFTER trigger on the insert/update operations of the
banking details table. The trigger takes the new or updated

banking information and writes it to another table. There might
already be such a trigger on the banking details table for
auditing purposes and so the attacker simply has to add his
part. To prevent any object count auditing picking up his
activities, the attacker can use an existing unused table. There
is a good chance he will find such a table, because there are
always features of the application that the database was
designed to have, that simply were not implemented and might
never be. This is due to the nature of the dynamic business
environment the companies operate in.

Every evening a scheduled task runs that takes all the
information stored in the table, puts it in an email and clears the
table. There is a possibility that some form of email notification
method has already been setup for the database administrator's
own auditing process. The attacker simply needs to piggy back
on this process and as long as he maintains the same
conventions, it will not stand out from the other audit process.
Otherwise he can invoke operating system commands from the
trigger to transmit the information to the outside. He can
connect directly to a server on the Internet and upload the
information if the database server has Internet connectivity.
Otherwise he can use the email infrastructure of the company
to email the information to a mailbox he controls.

The forensic analyst that investigates this data theft will
find the same two scenarios as in the previous example. The
audit information will point to either of the following: All the
staff members are stealing the banking information together or
somebody is using the business application to steal the banking
details with a malicious piece of functionality. Only by
investigating triggers and any interaction with the table that
contains the banking information, will he be able to identify the
correct party responsible for the data leak.

The actual breach of the IT infrastructure and the
subsequent manipulation of the database could have happened
weeks or months ago. This creates a problem for the forensic
investigator that tries to establish who compromised the
database. Some of the log files he normally uses might no
longer be available on the system because they have been
archived due to space constraints. If the compromise was very
far back, some of the archives also might no longer be
available because the backup tapes for example might already
have been rotated through and reused. The fact that a trigger
was used in this example is very useful to the forensic
investigator. The creation date and time of trigger can give him
a possible beginning for the timeline and more importantly the
time window in which the IT infrastructure breach occurred.
He can now use the log information he can still get for that
time window to determine who is responsible for the data theft.

V. CONCLUSION AND FUTURE RESEARCH
Two concerns were raised around the presence of database

triggers during forensic investigations. Can triggers cause the
contamination of the data being analysed and can the actions
performed by triggers be correctly identified and attributed
without analysing triggers?

Database triggers are generally defined to perform actions
based on changes in the database, be it on the data level or the

data definition level. This will normally not affect the work of
a forensic analyst, since he is primarily viewing information
(be it data or metadata) without making any changes. However
some DBMS's allow triggers to be set on the accessing of
information. If the forensic analyst works with an Oracle or
SQL Server database, he needs to consider the non-data
triggers. He should take great care in how he connects to the
database to prevent unintended changes from happening and
thus potentially having to do time consuming reconstruction to
get back to the initial state of the database.

Furthermore triggers can be used to facilitate malicious
actions on the back of normal application or operational actions
on the database. These changes would be executed in the
context of the initial change and the standard audit material
would attribute all changes to the same user. It is therefore
necessary to examine database triggers as part of the forensic
interpretation and attribution processes. All types of triggers
should be examined for out of the ordinary and suspicious
actions that relate to the compromised data. This is needed to
separate the user actions from the automatic trigger actions.

Further research is being conducted to determine how to
best analyse the different kinds of triggers. Attention also needs
to be given to the fact that some DMBSs allow the obfuscation
of the trigger content. An aspect that has not been addressed in
this paper is what impact triggers have when the forensic
investigator does make intentional changes on a copy of the
data. The investigator could be testing a hypothesis, performing
data reduction, reconstructing deleted data or simply be storing
his results in a temporary table.

REFERENCES
[1] Pollitt, M.M. (2007). An Ad Hoc Review of Digital Forensic Models.

Proceedings of the Second International Workshop on Systematic
Approaches to Digital Forensic Engineering. IEEE:43-54.

[2] Cohen, F. (2009). Digital Forensic Evidence Examination - 4th Edition.
Livermore, CA.: Fred Cohen & Associates.

[3] Olivier, M.S. (2009). On metadata context in Database Forensics.
Digital Investigation. 5(3-4):115–123.

[4] Khanuja, H.K. & Adane, D.S. (June 2012). A framework for database
forensic analysis. Computer Science & Engineering 2(3).

[5] ISO/IEC 9075-2. Information technology - Database languages - SQL -
Part 2:Foundation (SQL/Foundation).

[6] Turner, C.R., Fuggetta, A., Lavazza, L. & Wolf, A.L. (1999) A
conceptual basis for feature engineering. The Journal of Systems and
Software 49(1):3-15.

[7] DB-Engines Ranking of Relational DBMS. Available from: http://db-
engines.com/en/ranking/relational+dbms (1 May 2014).

[8] CREATE TRIGGER Statement, Oracle® Database PL/SQL Language
Reference 11g Release 2 (11.2). Available from:
http://docs.oracle.com/cd/E11882_01/appdev.112/e17126/create_trigger.
htm (2 May 2014).

[9] CREATE TRIGGER, Data Definition Language (DDL) Statements.
Available from: http://msdn.microsoft.com/en-us/library/ms189799.aspx
(2 May 2014).

[10] CREATE TRIGGER Syntax, MySQL 5.7 Reference Manual. Available
from: http://dev.mysql.com/doc/refman/5.7/en/create-trigger.html (2
May 2014).

[11] CREATE TRIGGER, PostgreSQL 9.3.4 Documentation. Available
from: http://www.postgresql.org/docs/9.3/static/sql-createtrigger.html (2
May 2014).

[12] CREATE TRIGGER, DB2 reference information. Available from:
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=

/com.ibm.db2z10.doc.sqlref/src/tpc/db2z_sql_createtrigger.htm (2 May
2014).

[13] Oracle Developer Community.
https://community.oracle.com/community/developer/search.jspa?people
Enabled=true&userID=&containerType=&container=&q=select+trigger

[14] Fabbri, D., Ramamurthy, R. & Kaushik, R. (2013). SELECT triggers for
data auditing. Proceedings of the 29th International Conference on Data
Engineering (ICDE). IEEE:1141-1152

[15] Logon Triggers, Database Engine Instances (SQL Server). Available
from: http://technet.microsoft.com/en-us/library/bb326598.aspx (2 May
2014).

[16] PL/SQL Triggers, Oracle® Database PL/SQL Language Reference 11g
Release 2 (11.2). Available from:
http://docs.oracle.com/cd/E11882_01/appdev.112/e17126/triggers.htm
(2 May 2014).

[17] Kornbrust, A. (April 2005). Database rootkits. Presented at Black Hat
Europe. Available from: http://www.red-database-
security.com/wp/db_rootkits_us.pdf (1 May 2014).

[18] Osborne, C. (13 February 2014). How hackers stole millions of credit
card records from Target. ZDNet. Available from:

http://www.zdnet.com/how-hackers-stole-millions-of-credit-card-
records-from-target-7000026299/ (5 May 2014).

[19] Adelstein, F. (February 2006). Live forensics: diagnosing your system
without killing it first. Communications of the ACM 49(2):63-66.

[20] Carrier, B.D. (February 2006). Risks of live digital forensic analysis.
Communications of the ACM 49(2):56-61.

[21] Hargreaves, C. & Chivers, H. (2008). Recovery of Encryption Keys
from Memory Using a Linear Scan. Proceedings of the Third
International Conference on Availability, Reliability and Security
(ARES). IEEE:1369-1376.

[22] Lee, M. & Bieker, G. (2009). Mastering SQL Server 2008. Indianapolis,
Indiana: Wiley Publishing Inc.

[23] Fowler, K. (2007). A real world scenario of a SQL Server 2005 database
forensics investigation. Available from:
https://www.blackhat.com/presentations/bh-usa-
07/Fowler/Whitepaper/bh-usa-07-fowler-WP.pdf (3 July 2014).

[24] Garfinkel, S.L. (2010). Digital forensics research: The next 10 years.
Digital Investigation 7(Supplement):S64-S73.

