
An Exploration of Geolocation and Traffic
Visualisation Using Network Flows

Sean Pennefather and Barry Irwin
Department of Computer Science

Rhodes University
Grahamstown 6140

Email: g10p0016@campus.ru.ac.za, b.irwin@ru.ac.za

Abstract—A network flow is a data record that represents
characteristics associated with a unidirectional stream of packets
transmitted between two hosts using an IP layer protocol. As
a network flow only represents statistics relating to the data
transferred in the stream, the effectiveness of utilizing network
flows for traffic visualization to aid in cyber defense is not
immediately apparent and needs further exploration. The goal
of this research is to explore the use of network flows for data
visualization and geolocation.

A prototype system capable of collecting network flows ex-
ported using the NetFlow version 9 protocol was designed and
implemented as part of this research to aid in the exploration.
This prototype system processes the collected flow records and
renders the geolocated results on an web based interactive map.

Using conformance testing it is shown that the prototype
system is capable of collecting network flows and generating
geolocated flow events withing 50 milliseconds of receiving the
raw flow records on the test platform. The system also provides
functionality for the generation of heatmaps and tools for
replaying flow events from the client browser for further visual
analysis. A reporter tool has also been developed to produce
monthly reports on the collected network flows.

I. INTRODUCTION

Network flow processing has the potential to allow for a
large reduction in the volume of data to be processed by
monitoring systems when compared to traditional packet pro-
cessing counterparts. The reason for this reduction in volume
is that a network flow is a single record that represents the
characteristics associated with an instance of communication
between two hosts using an IP layer protocol [1]. A flow record
does not record the actual data transferred and as a result, the
record size is only dependent on the number of characteristics
the record must report on rather than the number of packets
transferred during the lifetime of the connection.

This allows network flows to be used to reduce the volume
of data that must be processed. This reduction comes at
the cost of not recording the actual content of the packets
that make up the connection which are required by systems
that employ packet analysis techniques as part of processing
[2]. Because of this reduction in resolution, the effectiveness
of utilizing network flows for traffic visualization to aid in
cyber defense is not immediately apparent and needs further
exploration.

In order to explore the feasibility of Network Flows in the
above applications, we have developed a system that is capable

of performing both geolocation and traffic visualization. The
visualization is achieved by generating heatmaps and monthly
reports. This system reads in raw Network Flow packets
exported under the NetFlow version 9 protocol and handles
flow record aggregation as well as representing both the record
characteristics and geolocation results to the system user via
a web page.

II. NETWORK FLOW

The concept of a Network Flow was patented by Kerr and
Bruins on 28 May 1996 [3]. Initially, a flow was defined as a
set of packets all destined for the same destination IP address
and all originating from the same source address. Further
identification of a unique flow included the requirement that
all packets have the same destination port.

Since then, the concept of a network flow has been extended
by Cisco to be defined as a unidirectional sequence of packets
between two end hosts over a network [4]. Each packet in the
sequence must display the same seven characteristics shown
in Table I to be considered part of the same network flow. The
direction of the flow is determined by the host that began the
communication.

This flow data is generated by routing or switching devices
such as those made by Cisco [5] and Juniper [6]. The generated
data can then be transferred to other devices for analysis to
help identify potential network faults and monitor resource
use, typically for billing purposes. This data can further be
analyzed to only display information pertaining to a particular
network mask, a particular date or time, or overall resource
use.

In order to transfer the recorded data that has been collected
on observed flows to another device for processing, a raw flow
exporting protocol is employed. The exporting can occur when
the generating system concludes that a flow has expired or in
set intervals. Currently, the most commonly used flow export
protocols are those developed by Cisco which are NetFlow
version 5 and NetFlow version 9 [7]. Additionally, a new pro-
tocol is under development by the Internet Engineering Task
Force (IETF) called the IP Flow Information eXport (IPFIX)
protocol [8]. Though still in development, implementations of
the protocol are currently in use by network components such
as the Barracuda NG Firewall1.

1Only versions 5.2.3 and above are IPFIX compatible [9]

978-1-4799-3383-9/14/$31.00 ©2014 IEEE

TABLE I: Seven Characteristics of a Network Flow

Source IP Address
Destination IP Address
Source Port
Destination Port
Protocol
ToS Byte
Interface

A. NetFlow version 5

NetFlow version 5 is currently the most widely used proto-
col that is developed by Cisco for exporting raw flows from
routing devices to the collector [10]. Packets exported under
this protocol have a fixed size and a set number of fields. This
fixes the number of characteristics relating to a particular raw
flow that can be exported under this protocol.

Two disadvantages of using NetFlow version 5 over its
successor variants are that it does not support IPv6 and
the structure of exported packets is static [11]. IPv6 has
become increasingly prevalent as services such those provided
by Google are now accessible using IPv6 addressing. Flow
records exported under the NetFlow version 5 protocol are
limited to only exporting data in the defined fields of the record
and cannot change during system runtime.

B. NetFlow version 9

NetFlow version 9 is a raw flow export protocol that
dynamically structures the contents of the exported flow data
records according to a previously exported template [7]. This
allows collecting systems to process NetFlow version 9 data
packets without knowing the format of the contained records
prior to template lookup. The benefit of using this protocol
is that it allows the characteristics exported to be changed
without restarting either the exporter or collector systems. A
result of this is that current NetFlow collectors and parser
algorithms will not have to be recompiled to use a new
packet structure when it becomes necessary to export a new
characteristic from the export device. Another benefit of using
a template based system is that companies can configure export
devices to export flow records in a format that is optimal to
their needs as well as modify them at a later stage without
implementing a new protocol.

According to Cisco feature guides, NetFlow version 9 is
independent of the implemented transport protocol being used
to export the packets. Protocols used include UDP, TCP
and SCTP as described in NetFlow configuration guide on
exporting via SCTP [12].

Currently, NetFlow version 9 exports two types of records
which are flow records and options records [7]. Flow records
contain information regarding the generated flows and make
up the majority of the records contained in the packet payload.
Option records are used by the export devices to export
additional information regarding the raw flows or the current
configuration of the device. This can include the sampling

frequency and the algorithm used to generate the flows as
well as the number of flows observed.

C. IPFIX

IPFIX is a proposal to create a standardized protocol for
the export of raw flow records from an export device to a
collecting device. IPFIX is based on NetFlow version 9 with
formal specifications being outlined in RFC 3917 [13]. IPFIX
is well developed in terms of its specification and possible
applications in industry.

The IPFIX protocol employs a dynamic packet structure
consisting of data and template records. Though similar to
NetFlow version 9, IPFIX extends the number of character-
istics that can be exported from 128 to 239 [14]. As with
NetFlow version 9, the collector requires that the template is
received before any data formatted according to that template
is received.

IPFIX is designed to be independent of the underlying
transport protocol used which means it can be transmitted
using IP layer protocols such as TCP, UDP, and SCTP.
Though all three protocols are a viable choice for transmission,
should the transmission path be susceptible to congestion, it is
suggested in RFC 5101 [8] that SCTP be used rather than the
other two protocols due to the protocol’s congestion avoidance
capabilities.

III. GEOLOCATION

The Geolocation of IP addresses has become a useful
resource to aid in targeted telemarketing as it allows for the
generation of region specific advertisements [15]. Geolocation
also has applications in cyber defense by aiding monitoring
systems to identify the country or region in which an IP
address of interest resides. Maxmind [16] and IP2Location
[17] provide a range of databases that associate subnets with
the country or region in which they reside. Online geolocation
plugins are also available such as geoPlugin [18].

Investigations into applying geolocation to network flows
has recently been discussed in a paper by Celeda et.al. [19].
This paper investigates the feasibility of applying geolocation
to network flows for networks with high throughput. A com-
parison is done between applying the geolocation to recorded
IP addresses at the exporter and the collector stages. This paper
differs by focusing only on the collector side of the system
with emphasis on the realtime visualization of geolocated
network flows. Existing network flow visualizers such as
WebView [20] and FlowViewer2 exist and provide detailed
visualization of a network using network flows. These are
however not orientated towards realtime visualization which
the tool described here attempts to achieve.

IV. SYSTEM DESIGN

The system we have developed was designed to achieve two
defined goals. These goals were geolocation of the external
endpoints of each flow and the generation of visual aids to
assist in network visualization. In order to achieve these goals,

2http://sourceforge.net/projects/flowviewer/

Collector Server

Flow Storage Reporter

Client

Host A Host B Host C

Fig. 1: System Overview

system components for geolocation, report generation, and
visually representing recorded characteristics were needed.

To allow for interaction with the prototype system, the
geolocation and some of the visualization components are dis-
played to the user using a web based interface. Communication
with this interface is handled by a server component that can
serve the web pages and maintain the connection between the
served pages and the rest of the system. Furthermore, for the
visualization components to function, the system also includes
a database to act as a record storage component that can store
the characteristics of the collected flow records.

The system is split into four main components which are
necessary for the system to function. These components are;
the Collector, the Server, the Client, and the Reporter. All
of these components must be linked together to form the
complete system which is is shown in Figure 1. In this figure
arrows are used to represent the communication channels and
the direction of data flow between the different components
that make up the prototype system.

The four components are distributed into three different
groups: hosts A, B, and C. The grouping indicates a direct
dependency between the contained components while the com-
munication between groups is done over TCP connections. By
developing the system to communicate between the different
groups over a network, the system can easily be fragmented
with each group running on a different host.

By allowing the different components to communicate in
this manor, it becomes possible to situate the different com-
ponents in different networks so that the Server can become
more accessible to a network segment that is separate from
the segment in which the raw flows are being exported. This
allows for improved security as the Clients do not need to
access to the same network as the exporter to request pages
from the server.

The Client should be designed to run in the host’s browser
and so is not required to be run on the same host as any other
component of the system. Another import point to note about
the Client is that the system should be capable of handling
multiple instances of the Client simultaneously. To achieve
this, the Client should be implemented as a web page which
is returned by the Server to any requesting host.

Fig. 2: System Overview

A. Constraints

The prototype system is only capable of recording flows
relating to IPv4 address space and not the IPv6 address space.
This constraining has been implemented to limit complexity
during development and because of the lack of quality IPv6
golocation databases currently available.

The system implemented to perform this research is not
currently capable of sending or receiving NetFlow options
templates or NetFlow options records. The reason for this is
that adding the additional functionality to the system does not
effect the research performed.

V. SYSTEM IMPLEMENTATION

Implementation of the system was done using python as it
promotes rapid development and supports large collection of
libraries that can easily be included for object serialisation and
server implementation. Such libraries include Tornado3, which
provides asynchronous networking and a web framework, and
pyGeoIP4, an API for interfacing with geolocation databases.

Both the collector and Server components of the prototype
system are implemented as multi threaded applications to
allow for separate tasks to be completed as independent
threads to prevent blocking. Unfortunately as the implementa-
tion language is Python, these multi threaded applications are
unable to take advantage of a multicore platform.

The implementation of the reporter component of the system
was done using the reportlab library. The library allows the
programmer to create documents in Adobe’s Portable Docu-
ment Format (PDF) which can include both text and drawings
[21]. The structure of the report is static and is generated
procedurally by constructing a list of drawings that can be used
to visualise the stored data. This list is then built into a PDF
document which is returned by the reporter component. Figure
2 depicts an example of the total number of bytes transferred

3http://www.tornadoweb.org/en/stable/
4https://pypi.python.org/pypi/pygeoip

Fig. 3: Geolocated flow endpoint of IP: 146.231.123.92

Fig. 4: Google Maps lookup for IP: 146.231.123.92

for a specified month which is created as part of the report
generation.

VI. TESTING AND RESULTS

After implementation of the prototype system was complete,
it was necessary to perform tests to insure that the geolocation
component functioned correctly. Timing tests were also done
for different system components as well as the system as a
whole. From these timings we were able to determine the
processing time by this system to convert a packet received
under the NetFlow version 9 protocol into a flow event that
could be sent to a web application for rendering.

A. Geolocation Results

In order to test the geolocation component of the prototype
system, we used an external application to perform geoloca-
tion on a known IP address. The coordinates returned were
rendered on a Google map to visibly display the address
location. Simulated network traffic using these IP addresses
was then replayed to the prototype system using an application
called softflowd5. The rendered results were then recorded and
compared with the Google map generated.

To generate the test traffic, two options were considered.
The necessary packets could have been constructed entirely
in the test bed or legitimate traffic could be collected and
modified to suit the needs of the test bed. After considering
the difficulties involved in either approach, it was decided that
modifying legitimate traffic would be the optimal choice.

The legitimate traffic was generated using a simple
Client/Server model which consists of a Client script and a

5http://code.google.com/p/softflowd/downloads/list

Fig. 5: Google Maps rendering of Physical[B] and
Geolocated[A] location of IP 146.231.123.92.

Server script. The traffic generated from running this model
was written to a pcap file using tcpdump6. The resulting pcap
file was then read into a Python script which used the Scapy
library to modify the packet headers. The modified data was
then written into a new pcap file. To replay the modified traffic
back onto the wire, tcpreplay was used which read the pcap
file and reproduced the necessary packets.

The replayed traffic was processed by softflowd which
in turn generated the raw flows and exported them to the
implemented system. The system results were then rendered
on the realtime map of a connected Client via the web
browser. Comparing figures 4 and 3 it is shown that the results
produced by the prototype system correlate with geolocation
results produced by a different system. Geolocation tests were
performed for other six different IP addresses and the rendered
images for each show the same results.

Inaccuracies do however exist in the geolocation databases
that the implemented system relies on [22]. The IP address
geolocated in Figures 4 and 3 belong to Rhodes university
which is not situated at the geolocated coordinates. The
physical location of this institute is recorded using Google
Maps as marker B in Figure 5. The distance between the
actual location of the host and the geolocated position is
310.69 kilometers. Relative to a global scale, this inaccuracy
is not large enough to consider geolocation unsuccessful but
should warrant concern regarding geolocation accuracy. These
inaccuracies arise because some subnets in the geolocation
tables are incorrectly mapped and so is not a fault of the tool
itself but rather in the geolocation database used.

B. Timing

The time taken for the implemented system to process a
raw flow and produce a flow event is recorded to be approxi-
mately 0.05 seconds or 50 milliseconds. This is performed by
recording the time when the system receives a raw network
flow to the time the associated flow event is broadcast to the
connected Clients. A subset of the recorded times are shown
in Table II.

These results are measured from the time a packet is
received by the Collector to when it is broadcast from the
Server. As a result, it excludes the transmission time from the
Server to the Client. It was decided not to perform timing tests

6http://www.tcpdump.org/release

TABLE II: Sample recorded results of time taken to process a network flow
Test No. Time Packet Received Time First Record Sent Duration [s]

1 1381000626.1056400 1381000626.1600400 0.0543940
2 1381001156.9537300 1381001157.0111500 0.0574150
3 1381001211.8136500 1381001211.8485900 0.0349381
4 1381001301.8416500 1381001301.8949600 0.0533080
5 1381001356.3536600 1381001356.4073800 0.0537219

Fig. 6: Sample heatmap for flows seen

Fig. 7: Sample heatmap for data transferred

between the implemented Server and connected Clients as the
duration is heavily dependant on the quality of the network
path between the two components and considered out of scope
for the prototype system

VII. SYSTEM DEMONSTRATION

To demonstrate the functionality of the implemented system,
a large file was downloaded using peer to peer file sharing
system. The file downloaded was a distribution of the Linux
Mint 15 operating system which is free to download7 which
is 959.4 MB in size.

The system was initialised and softflowd was used to
monitor the download and generate the raw network flows. The
file downloaded at an average of 18 MiB/s and a system report
was generated. After the download had completed, the system
was used to generate a series of heatmaps for the different
flow characteristics.

From the generated maps, the comparison of two character-
istics is of particular interest. The first characteristic is Figure 6
which is a heatmap where the colouring represents the number
of flows seen to and from a specific country. The second
characteristic depicts byte transfer where the heat indicates
the volume of data seen from a specific country. The byte
heatmap is depicted in Figure 7.

Figure 6 indicates the countries to which were connected to
during the download. As expected, the heatmap shows results

7http://www.linuxmint.com/edition.php?id=132.

Fig. 8: Flow event replay of download

similar to the replay map shown in Figure 8 which shows the
geolocated origins of these flows. Figure 7 describes a different
result and shows countries Russia and France outweigh the rest
of the world with regards to where the data was transferred
from. This comparison shows how the system could be used
to show the difference between flow count and flow volume.
Similar comparisons can be done for packet count and the
number of different IP addresses connected to in each country.

VIII. CONCLUSION

It is shown through conformance testing that the geolocation
provided by the implemented system is suitable for geolocat-
ing network flows on a global scale. Inaccuracies do however
exist but are due to inaccuracies in the geolocation database
rather than a fault of the implemented system. This issue could
be rectified by using a more accurate geolocation database
but for the current implementation, the database used is still
considered acceptable.

Considering the results collected from testing the prototype
system, it can be concluded that network flows are a feasible
source of data for traffic visualization and geolocation. Treat-
ing the exported characteristics associated with each flow as
traffic summaries, analysis using network flows allows the user
to quickly acquire a good overview of the condition of the
associated network. A drawback to this approach is the loss
of resolution and so the user will be unable to evaluate packet
contents if using network flows.

IX. FUTURE WORK

Currently, this implementation of the system does not at-
tempt to support IPv6 as it was not considered necessary for a
proof of concept design. Should the system later be required to
monitor and geolocate IPv6 addresses, then the system should
be extended to do so.

As intended, protocols NetFLow version 9 and IPFIX are
very similar so an extension to this system that should be
considered is to implement support for IPFIX.

The reporting tools in the current implementation have been
designed as a proof of concept and to show the type of infor-
mation that the system can report on. This system component
can be improved to include more thorough reporting tools,
especially if the system is extended to accept a larger set
of characteristics. The reporting functionality should also be
tailored to suit the field that the system will be implemented
in.

X. ACKNOWLEDGEMENTS

I would like to thank the NRF and Rhodes University for
the financial support that allowed me to complete this research.
I would also like to acknowledge the financial and technical
support of Telkom, Tellabs, Stortech, Genband, Easttel, Bright
Ideas 39 and THRIP through the Telkom Centre of Excellence
in the Department of Computer Science at Rhodes University.

This research makes use of GeoLite data created by Max-
Mind.

REFERENCES

[1] J. T. Morken, “Distributed NetFlow Processing Using the Map-Reduce
Model,” Computer and Information Science, Norwegian University
of Science and Technology, June 2010, accessed on: 27 October
2013. [Online]. Available: http://www.diva-portal.org/smash/get/diva2:
352472/FULLTEXT01.pdf

[2] P. E. Proctor, The Practical Intrusion Detection Handbook, I. Winkler,
Ed. Prentice Hall PTR, 2001, vol. 1, no. 1.

[3] Kerr and Bruins. (1996) Network flow switching and flow data
export. Patent. [Online]. Available: http://www.lens.org/lens/patent/
US7475156B2

[4] Cisco. (2012, October) NetFlow Services Solutions Guide . Cisco.
Accessed on: 23 October 2013. [Online]. Available: http://www.cisco.
com/en/US/docs/ios/solutions docs/NetFlow/nfwhite.html

[5] ——, Catalyst 6500/6000 Switches NetFlow Configuration and
Troubleshooting, Cisco, Jan 2012, document ID: 70974. [On-
line]. Available: http://www.cisco.com/c/en/us/support/docs/switches/
catalyst-6500-series-switches/70974-netflow-catalyst6500.html

[6] I. Juniper Networks. (2013) Junos OS Routing Protocols
Overview. Accessed on 21 May 2013. [Online]. Available:
http://www.juniper.net/techpubs/en US/junos13.1/information-products/
pathway-pages/config-guide-routing/config-guide-routing-overview.pdf

[7] Cisco. (2011) Cisco IOS NetFlow Version 9 Flow-
Record Format. Accessed on 16 May 2013. [On-
line]. Available: http://www.cisco.com/en/US/technologies/tk648/tk362/
technologies white paper09186a00800a3db9.pdf

[8] Claise, Cisco Systems, Trammell, and Zurich, Specification of the IP
Flow Information eXport (IPFIX) Protocol for the Exchange of Flow
Information, RFC, Network Working Group Std., Rev. rfc5101bis-06,
Feb 2013. [Online]. Available: http://tools.ietf.org/html/rfc7011

[9] Barracuda. (2013, May) How to Configure Audit & Reporting
With IPFIX. TechLibrary. Barracuda. Accessed on 27 October
2013. [Online]. Available: http://techlib.barracuda.com/pages/viewpage.
action?pageId=6979841

[10] C. Lee, H. Kim, H. Jeong, and Y. Won, “Analysis of SIP Traffic Behavior
with NetFlow - based Statistical Information,” June 2010.

[11] Cisco Systems, Catalyst 4500 Series Switch Cisco IOS Software
Configuration Guide, 12th ed., Cisco, Cisco Systems, Inc. 170 West
Tasman Drive San Jose, CA 95134-1706 USA, 2004, accessed on:
September 2013. [Online]. Available: http://www.cisco.com/c/en/us/td/
docs/switches/lan/catalyst4500/12-2/54sg/configuration/guide/config.pdf

[12] Cisco. (2012) NetFlow Reliable Export With SCTP. Accessed on 14
May 2013. [Online]. Available: http://www.cisco.com/c/en/us/td/docs/
ios/12 4t/12 4t4/nfhtsctp.html

[13] T. Zseby, J. Quittek, B. Claise, and S. Zander, “Requirements for IP Flow
Information Export (IPFIX),” Internet Engineering Task Force(IETF),
Tech. Rep., 2004. [Online]. Available: http://tools.ietf.org/html/rfc3917

[14] J. Quittek, P. Aitken, J. Meyer, B. Claise, and S. Bryant, “Information
model for ip flow information export,” IETF, Tech. Rep., 2008, accessed
on: March 2013. [Online]. Available: http://tools.ietf.org/html/rfc5102

[15] G. Cliquet, Geomarketing. Methods and Strategies in Spatial Thinking,
G. Cliquet, Ed. ISTE Ltd, 2006, vol. 1.

[16] MaxMind. Maxmind. MaxMind Inc. Accessed on 12 May 2013.
[Online]. Available: http://www.maxmind.com/en/home

[17] IP2Location. IP Address Geolocation to Identify Website Visitors
Geographical Location. Online. IP2Location. Accessed on: 15th
October 2013. [Online]. Available: http://www.ip2location.com/

[18] geoPlugin. plugin to geo-targeting and unleash your site’s potential.
Online. geoPlugin. Accessed on 5 March 2014. [Online]. Available:
http://www.geoplugin.com/start

[19] P. Celeda, P. Velan, and M. Rabek, “Large-Scale Geolocation for
NetFlow,” IFIP/IEEE International Symposium on Integrated Network
Management, no. 13, pp. 1015–1020, May 2013, accessed on 1 July
2014.

[20] C. Weinhold. (2013) Webview Netflow Reporter. Online. CDW.
Accessed on 1 July 2014. [Online]. Available: http://wvnetflow.
sourceforge.net/#overview

[21] ReportLab, “Reportlab pdf library user guide,” ReportLab, ReportLab
PDF Library User Guide ReportLab Version 2.7 Document generated
on 2013/05/07 20:18:53 Thornton House Thornton Road Wimbledon
London SW19 4NG, UK, Users Guide 2.7, May 2013. [Online].
Available: http://www.reportlab.com/docs/reportlab-userguide.pdf

[22] I. Poese, S. Uhlig, and M. Ali Kaafar. IP Geolocation Databases:
Unreliable? CCR. Accessed on 5 May 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1971171

