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Abstract—Mobile technology continues to evolve in the 21st
century, providing users with improved capabilities and advance
functionality. One of the leaders of this evolution is Android,
a mobile operating system that continuously elevates existing
features and offers new applications. Such improvements al-
lowed Android to gain popularity worldwide. A combination of
Android’s advance technology and increasing popularity allow
smartphones supporting this operating system to become a rich
source of trace evidence. Traces found on Android smartphones
form a significant part of digital investigations, especially when
the user of the smartphone is involved in criminal activities. A
key component of these traces is the date and time, often formed
as timestamps. These timestamps allow the examiner to relate the
traces found on Android smartphones to some real event that took
place. Knowing when events occurred in digital investigations is
of great importance to the overall success of the investigation.
This paper introduces a new solution, called the Authenticity
Framework for Android Timestamps (AFAT) that establishes the
authenticity of timestamps found on Android smartphones. Cur-
rently the framework determines the authenticity of timestamps
found in SQLite databases by following two individual methods.
The first method identifies the presence of certain changes in the
Android file system, which are indications of the manipulation of
the SQLite databases. The second method subsequently focuses
on the individual SQLite databases and the identification of
inconsistencies in these databases. The presence of specific file
system changes as well as inconsistencies in the associated SQLite
databases indicates that authenticity of the timestamps might
be compromised. The results presented in the paper provide
preliminary evidence that the suggested approach, Authenticity
Framework for Android Timestamps, shows potential.

Index Terms—Digital Forensics, Mobile Forensics, Smart-
phones, Android, Timestamps, Manipulation, SQLite Databases.

I. INTRODUCTION

The past decade saw the rapid improvement of smartphone
technology, allowing these devices to become very popular
across the globe. Their current prominence is directly re-
lated to the provided capabilities and functionality, which
nowadays closely resemble a personal computer. Bundled
with a complete operating system, improved connectivity and
communication functions, and the option of adding additional
third-party applications, smartphones have become powerful
devices. The leading smartphone Operating System (OS) of
2014 was Android [1], which has been evolving in a remark-
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able way and continues to gain widespread popularity. The
current prevalence of Android led this paper to focus only on
this particular smartphone OS.

The extensive and wide use of Android smartphones allows
these devices to become a rich source of trace evidence [2].
All events occurring on Android smartphones generate traces
that form an important component of digital investigations,
especially when the user of the smartphone is involved in
criminal activities. The valuable information (such as contacts,
text messages, call lists, website visited or instant messages)
contained in these traces can provide a well-defined snapshot
of a user’s actions at a specific time. Besides providing a
description of the event, traces found on Android smartphones
also often store the time and date component in the form of
a timestamp. Timestamps are integral to digital investigations
since it provides the examiner the opportunity to relate the
traces found on the Android smartphones to some physical
event that took place. A collection of timestamps can be
combined to construct a timeline, which provides the examiner
with a chronological ordering of events.

The timestamps associated with these stored traces can be
a threat to the user’s privacy [3] since the traces provide
an overview of the user’s actions. To protect their privacy,
smartphone users can use certain techniques to manipulate the
timestamps of the traces and change the associated events.
These techniques are referred to as Anti-forensics and are
primarily used “fo compromise the availability or usefulness
of evidence” [4]. These techniques are applied by smartphone
users in an attempt to either hide or change event logs, which
results in the alteration of the timestamps associated with those
events.

Knowing when events occurred in digital investigations is
of great importance to the overall success of the investigation.
Due to the significance of timestamps, it necessary for examin-
ers to be able to verify their authenticity and accuracy. Without
such verification, the collected timestamps might be incorrect
or inaccurate due to tampering and will lead the examiner
to make unreliable conclusions. Existing research shows few
papers that attempt to offer a solution regarding the verification
of the authenticity and accuracy of timestamps. Verma et. al.
[5] preserve date and time stamps by capturing the system
generated Modification, Access, Change and/or Creation Date
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and Timestamps (MAC DTS) values and storing it in a secure
location such as, a cloud server, outside of the smartphone. The
cloud snapshot of the original MAC DTS values can be used
to verify the authenticity of MAC DTS values of questionable
files on the smartphone [5]. Govindaraj et. al. [6] designed
a solution, called iSecureRing, which allows a jailbroken
iPhone to be secure and forensic ready by preserving the
timestamps. These timestamps are stored outside the device
on a secure server or the cloud and can be used during
security incidents [6]. Both solutions, however, require the
installation of additional functionality on the smartphone prior
to seizing the device for investigation. There is, thus, no
existing solution (to the best of the authors’ knowledge) that
allows for the verification of timestamps collected from seized
Android smartphones.

This paper performs exploratory experiments that involve
the manipulation of timestamps found in SQLite databases
on Android smartphones. While conducting the experiments,
the changes occurring on the Android smartphone are ob-
served. Based on those observations, specific heuristics are
identified that may indicate the manipulation of timestamps.
These heuristics form a new solution that allows examiners
to verify the authenticity of timestamps collected from traces
found on Android smartphones. The new solution, called the
Authenticity Framework for Android Timestamps or AFAT,
verifies the authenticity of timestamps by following a practical
methodology, which involves two methods. The first method
identifies the presence of certain changes in the Android
file system, which are indicators of the manipulation of the
SQLite databases. The second method subsequently focuses
on the individual SQLite databases and the identification of
inconsistencies in these databases. The immediate challenges
to address are the following: (a) effective manipulation of time-
stamps found in SQLite databases on Android smartphones
and (b) verifying that the authenticity of these timestamps
have been compromised by using the methods of AFAT. The
current paper provides preliminary evidence that, in terms of
the challenges identified above, the suggested approach shows
potential.

The remainder of the paper is structured as follows. Section
II briefly describes the architecture of Android and the internal
structure of SQLite databases. Section III presents the process
followed to manipulate the timestamps and provides a detailed
description of AFAT. Section IV offers an in-depth discussion
of AFAT and describes potential future work. The conclusions
are made in Section V.

II. BACKGROUND

With the continuous growth in functionality of Android
smartphones, increasing number of people make use of these
devices during their daily activities. For the traces collected by
Android smartphones to be of use during digital investigations,
a comprehensive understanding of the architecture of Android
is required. An evaluation of SQLite is also required, since
most of the traces found on Android smartphones are stored
in SQLite databases. This section, therefore, provides a short
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introduction of the Android architecture and presents the
internal structure of SQLite databases.

A. Android’s Architecture

Android is popular open source software architecture pro-
vided by the Open Handset Alliance [7] that is currently
targeting mobile devices, such as smartphones and tablet
computers. The Android software architecture (see Fig.l) is
divided into five layers: Applications, Application Framework,
Libraries, Android Runtime and the Linux Kernel [8]. The
uppermost layer, Applications, provide access to a set of core
applications. The Application Framework layer implements
a software framework that reassembles functions used by
existing applications. All available libraries are written in
C/C++ and called through a Java interface. The Android
runtime consists of a set of core libraries and a Dalvik virtual
machine. The bottommost layer is the Linux kernel, which
allows for interaction between the upper layers by means of
device drivers [8], [9].

Until Android version 2.2 (Froyo), most Android smart-
phones used Yet Another Flash File System 2 (YAFFS2) [11].
YAFFS2 was developed in 2004 in response for larger sized
NAND (Not-AND) flash devices [12]. With the release of
Android version 2.3 (Gingerbread), the file system for Android
devices switched from YAFFS2 to Fourth Extended (EXT4)
file system [11]. YAFFS2 was developed with a single-
threaded design, which may cause bottlenecks in devices
released with a multi-core chipset. The EXT4 file system,
which is one of the most used file systems in Linux, does
not have this limitation and can run smoothly on multi-core
devices. The disk space of the EXT4 file system is divided
into logical blocks, which reduce management overhead and
improves throughput [13]. The key features of the EXT4 file
system promote the development of advance applications and
functionalities.

The architecture of Android regularly improves to support
more improved applications. It is therefore necessary to contin-



uously evaluate Android’s architecture and remain up to date
with the current changes.

B. SQLite Databases

SQLite is an open source software library that implements
a lightweight Structured Query Language (SQL) database
engine for embedded use [14], [15]. The lightweight design
of SQLite does not require a separate server and thus al-
lows for the quick processing of stored data by reading and
writing directly to a disk file [16]. The main database file,
<database_name>.db or <database_name>.db3, consists out
of a complete SQL structure that includes tables, indices,
triggers, and views [16]. To support the SQL structure, the
main database file is divided into one or more pages and each
page share the same size [17]. The first page of the main
database file is called the header page and is composed of the
database header and the schema table. The database header
stores structural information and the schema table contains
the table information of the database. The pages following the
header page are structured as B-trees and store the actual data
[18].

During transactions, SQLite stores additional information in
a second file called either a rollback journal or write-ahead log
(WAL) file [17]. The rollback journal is the default method of
SQLite to implement an atomic commit and rollback. Begin-
ning with SQLite version 3.7.0, the new WAL approach was
introduced and allowed for improved speed and concurrent
execution. The WAL approach preserves the original content in
the main database file and appends changes to a separate WAL
file (<database_name>.db-wal), which contains a header and
zero or more WAL frames. Transferring the transactions from
the WAL file to the main database file is call a “checkpoint”.
When a checkpoint occurs the updated or new pages in the
WAL file are written to the main database file. The checkpoint
operation leaves the WAL file untouched, allowing the WAL
file to be reused rather than deleted [19]. SQLite does a
checkpoint automatically when a file reaches a size of 1000
pages (about 4MB in size) [20].

SQLite databases are a popular choice for data storage
in Android applications [14]. An Android application, which
uses SQLite, separately includes the SQLite databases and
this allows for reduced external dependencies and minimized
latency [21]. A lot of events taking place on an Android
smartphone generate valuable traces, for example: call history,
SMS/MMS messages, e-mails (Gmail) and instant messages
generated by Google Hangouts (previously Google Talk) as
well as WhatsApp Messenger. A summary of the SQLite
databases used to store these traces, as well as the location
of these databases on an Android smartphone are provided in
Table 1. The examples used throughout the remainder of this
paper focus on the SQLite database storing the SMS/MMS
messages.

III. DETECTION OF MANIPULATED TIMESTAMPS

Timestamps of traces found on Android smartphones are
integral to digital investigations, especially if the owner of the

smartphone participates in criminal activities. Collected time-
stamps allow the examiner to relate the traces to some physical
event and, more importantly, establish a timeline depicting
the chronological order of events. Due to the importance of
timestamps in digital investigations, smartphone users, or even
malicious applications, can alter timestamps to compromise
the integrity of traces as evidence.

In order to manipulate timestamps found in SQLite
databases, as well as, detecting the changes occurring due to
the manipulation, access to the necessary files are required.
All user-related data can be found in the /data directory on
an Android smartphone [22]. Access to this directory is not
permitted by default and is only accessible by rooting the
Android smartphone. The term rooting, which is similar to
the jailbreaking of an iPhone, is often perceived as negative
action [12]. Rooting an Android smartphone merely means to
escalate the current rights to root access rights. Root access
rights allow access to the root directory (/) and provide the
necessary permissions to take root actions [12]. The technical
process of rooting an Android smartphone is beyond the scope
of this paper.

The remainder of this section describes the appropriate steps
that must be followed to manipulate timestamps in SQLite
databases and also introduces the Authenticity Framework
for Android Timestamps. All of the experiments and analysis
described below was performed on a rooted Samsung Galaxy
S2, running Android version 4.1.2 (Jelly Bean).

A. Manipulation of Individual
Databases

Timestamps in SQLite

Access to the root directory, which is necessary to manip-
ulate the timestamps in the SQLite databases, requires the
enabling of the Universal Serial Bus (USB) debugging func-
tionality [12]. Although the default setting for USB debugging
is “disabled”, going to Settings, selecting Developer options
and touching the checkbox next to “USB debugging” will turn
on this feature. Once USB debugging is enabled, interaction
with the root directory can occur using the Android Debug
Bridge (adb). Android Debug Bridge is a versatile command-
line tool that communicates with a connected Android smart-
phone [23]. To allow for complete access to the root directory,
adb is restarted with the command, adb root, to gain root
permission. Full access, with the necessary permissions, has
been established and it is now possible to manipulate the
timestamps in SQLite databases.

Manipulation of timestamps proceeds through three in-
dividual phases: retrieve, manipulate, and return. The first
phase retrieves the required SQLite database files from the
Android smartphone. Since the sqlite3 command utility, which
is required to interact with the SQLite databases, does not
come pre-installed on Android smartphones [24], the SQLite
databases must be transferred to the local computer. The
command, adb pull <remote><local>, copies the specified
file from the Android smartphone to the local computer [23].
It is necessary to repeat this command for both the main
database file, as well as the associated WAL file, which cannot



TABLE I
USER DATA STORED IN SQLITE DATABASES

User Data SQLite Database Location Table
Call History /data/data/com.sec.android.provider.logsprovider/databases/log.db logs
Messages (SMS/MMS) | /data/data/com.android.providers.telephony/databases/mmssms.db sms
E-mails (Gmail) /data/data/com.google.android.gm/databases/mailstore. <name @gmail.com>.db | messages
Google Hangouts /data/data/com.google.android.talk/databases/babell.db messages
WhatsApp Messenger /data/data/com.whatsapp/databases/msgstore.db messages

be edited directly. Retrieving both the main database file and
the associated WAL file ensures that all the latest records are
present. The list of commands is shown below:

o adb pull /data/data/<application_package_name>
/databases/<database_name>.db C:\<local_folder>

e adb pull /data/data/<application_package_name>
/database<database_name>.db-wal C:\<local_folder>

Manipulating the timestamps found in the copied SQLite
database files is performed during the second phase. A script is
created to act as a malicious application and randomly manipu-
late timestamps within the SQLite database. During the execu-
tion of the script the main database file is opened, allowing for
a checkpoint to occur. Once the execution of the script is com-
pleted, only the main database file (<database_name>.db)
remains and must be returned to the Android smartphone.

The final phase returns the modified SQLite database to
the Android smartphone. The command, adb push <lo-
cal><remote>, copies the specified file to the connected
Android smartphone [23]. To prevent the changes from being
over-written by the existing data in the <database_name>.db-
wal file, the file must be removed. The first step is to start an
interactive shell using adb shell, followed by su, which pro-
vides root permissions within the shell. The next command, cd
data/data/<application_package_name>/databases/, change
the current working directory to the directory containing the
main database and associated WAL file. Using the command
rm <database_name>.db-wal will delete the WAL file from
the directory. For the changes to reflect on the Android
smartphone, it is necessary to reboot the device.

Fig.2 provides a snapshot of the existing SMS/MMS mes-
sages before and after the manipulation of the timestamps. The
comparison shows significant changes to the dates of specific
messages and a reordering of the messages. In order to verify
that these changes are indeed due to manipulation, the methods
of the Authenticity Framework for Android Timestamps must
be applied.

B. Authenticity Framework for Android Timestamps

In this section the Authenticity Framework for Android
Timestamps or AFAT is described. AFAT provides the ex-
aminer with a practical methodology that can be followed
to verify the authenticity of timestamps. The focus of AFAT
is primarily on timestamps collected from traces found on
Android smartphones. The methods described in the remainder
of this section verify the authenticity of timestamps found
in SQLite databases. The first method identifies the presence
of certain changes in the Android file system, which are

indicators of the manipulation of the SQLite databases. The
second step subsequently focuses on the individual SQLite
databases and the identification of inconsistencies in these
databases. The presence of specific file system changes, as well
as, inconsistencies in the associated SQLite databases indicates
that the authenticity of the timestamps might be compromised.
1) Android File System Flags: Android File System Flags
(AFS-Flags) are indicators of the potential tampering of
SQLite databases on Android smartphones. Each AFS-Flag
represents a change that occurs in the Android file system
due to the modification or removal of a SQLite database or
any other associated database files. The presence of any of
these AFS-Flags is not an indication of the manipulation of
timestamps but merely that the SQLite databases have been
tampered with. The following four individual AFS-Flags offer
guidance regarding the tampering of SQLite databases:

o File permissions: associated with the SQLite database
files in the directory of a specific application are set to
give only read/write access to the file owner and the group
members. For each application, the current file owner and
group members are only the individual application. Any
modification or removal of a file within this directory
will change the existing file permissions of the modified
file from -rw-rw—- to -rw-rw-rw-. The following changes
to the file permissions are therefore an indication of
the possible manipulation of timestamps in the SQLite
databases:

— File permission of <database_name>.db file
changed from -rw-rw—- to -rw-rw-rw-.
— File permission of <database_name>.db-wal file
changed from -rw-rw—- to -rw-rw-rw-.
¢ Ownership: of the SQLite databases is given to the
specific application using the database. The file owner
and group members are thus set to the user ID (UID)
of the application, which is unique and specific to the
application. The UID remains constant for the duration
of the application on the particular Android smartphone.
Modifications to any SQLite database files will result in a
change of ownership and subsequently change the UID of
both the file owner and group members. The following
change to the ownership of the main database ifle is a
possible indication of the manipulation the databases:

— The current ownership for the file owner and group
members of the <database_name>.db file changed
from the current UID to root.

o File Size: of the main database file is expected to be
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smaller than the size of the associated WAL file, since all
new transactions are appended to the WAL file. The size
of the main database file is only expected to grow after a
checkpoint, when all the transactions from the WAL file is
transferred to the main database file. A checkpoint, how-
ever, occurs only after the WAL file accumulated 1000
entries (leading to a file size of approximately 4MB),
and thus the size of the main database remains relatively
small. An automatic checkpoint occurs when the main
database file is opened to allow for the manipulation of
the timestamps. The WAL file must be deleted to prevent
the changes made in the main database file from being
overwritten by the existing content located in the WAL
file. Once the Android smartphone is rebooted to reflect
the changes, a new WAL file is automatically generated.
This new WAL file contains limited data and thus has a
file size that is smaller than the size of the main database
file. A WAL file with a file size smaller than the size main
database file is therefore an indication of the possible
manipulation of that database.

System Reboot: is required for the changes made to the
SQLite databases to reflect on the Android smartphone.
The system reboot must occur after making the changes
to the SQLite database. Therefore the timestamps of the
files associated with a system reboot will follow after
the timestamp that shows when the main database file
was last modified. Multiple experiments revealed that the
following files are indicators of a system reboot:

— rtc.log file located in the /data/log/ directory.

— powerreset_info.txt file located in the /data/log/ di-
rectory.

— SYSTEM_BOOT@ [timestamp].txt file generated in
the /data/system/dropbox/ directory.

— event_log@[timestamp].txt file generated in the
/data/system/dropbox/ directory.

Android log data are written to certain files in the

/data/log/ directory [25]. Two files, rtc.log and power-
reset_info.txt, are existing files in this directory. These
files are updated with a new entry after every system
reboot and every entry shows the boot time of the Android
smartphone. The files, SYSTEM_BOOT @ [timestamp ].txt
and event_log @ [timestamp].txt, are located in the di-
rectory /data/system/dropbox/ [26], [27]. This folder is
used by a service known as DropBoxManager (unrelated
to the DropBox cloud storage service) and persistently
stores chunks of data from various sources such as
application crashes and kernel log records [26]. The
SYSTEM_BOOT@[timestamp].txt file is generated con-
sistently at boot time, with the timestamp forming part
of the file name showing when the Android smartphone
was booted. The other file, event_log@ [timestamp].txt,
is generated at 30 minute intervals and also indicates
the time when the Android smartphone was rebooted.
A system reboot occurring closely after the modification
date of a SQLite database provides a possible indication
of the modification of timestamps. A system reboot can,
however, occur at any time after pushing the modified
main database file onto the Android smartphone and is
thus necessary to establish a time frame in which this
particular AFS-Flag will be deemed reliable.

Fig.3 provides a comparison of the changes that occurred
in the directory containing the SQLite database that stores
the SMS/MMS messages. Fig.3 (b) indicates the existence of
three AFS-Flags. The first AFS-Flag is the file permissions of
both the mmssms.db and the mmssms.db-wal, which changed
from -rw-rw—- to -rw-rw-rw-. The second AFS-Flag is the
ownership for the both the file owner and group members of
the main database file that changed from radio to root. The
final AFS-Flag is the file size of the mmssms.db-wal, which
is smaller than the size of the main database file, indicating
that the mmssms.db-wal file was possibly deleted.

Fig.4 shows that the rtc.log and powerreset_info.txt files
were last modified at 15:28 on May 6 and Fig.5 presents
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Fig. 3. Comparison of changes in the directory containing the SQLite database for the SMS/MMS application

the contents of a SYSTEM_BOOT@ 1430918940293.txt, which
indicates that a reboot occurred at 15:29 on 6 May. All three
files illustrate that a reboot occurred approximately at 15:28
on May 6, which follows after the last modified date of the
main database file (15:27 on May 6). The existence of these
files verifies that a system reboot occurred after pushing the
modified main database file onto the Android smartphone.

The presence of all four AFS-Flags indicates the possible
manipulation of timestamps within the SQLite database storing
the SMS/MMS messages. Identification of these manipulated
timestamps requires the analysis of the SQLite database for
potential inconsistencies.

2) SQLite Database Inconsistencies: SQLite databases are
the prominent choice for data storage in the Android OS.
The association of one or more AFS-Flags with a specific
SQLite database indicates the potential manipulation of the
stored timestamps. Detection of the manipulated timestamps
requires the further analysis of the SQLite database for
any potential inconsistencies. An inconsistency in a SQLite
database is described as a record that is listed incorrectly when
ordered according to the following fields: primary key and
a field containing dates or timestamps. The identification of
inconsistencies in the tables of SQLite databases requires the
evaluation of the above mentioned fields.

The tool selected to perform the evaluation is SQL. SQL
is a powerful query language, allowing for the formulation
of queries that can be of forensics use [28]. The evaluation
of the tables available in the SQLite databases proceeds
through three steps and use the following SQL statements:
CREATE TABLE, INSERT INTO, and SELECT. To preserve
the integrity of the data stored in the original table, a
new temporary table is created using the CREATE TABLE
statement. The purpose of the CREATE TABLE statement is
to define the physical structure of the new temporary table
[29]. The temporary table contains a primary key, which is
an integer value that auto-increments, and all the fields that
are necessary to identify the inconsistencies. The query to
create the temporary table is as follows:

CREATE TABLE temp (new_id INTEGER PRIMARY
KEY AUTOINCREMENT, original_id INTEGER, timestamps
INTEGER);

Following the creation of the new temporary table is the
population of this table with all the records currently located

in the original table, which is being investigated. To perform
this action, a combination of the INSERT INTO and SELECT
statements are used. The SELECT statement selects all the
records from the table currently under investigation while the
INSERT INTO statement inserts these selected records into
the temporary table. Continuing with the SMS/MMS SQLite
database as an example, the SQL query required to copy the
records from the sms table into the temporary table is as
follows:

INSERT INTO temp (original_id,
_id, date FROM sms;

timstamps) SELECT

To locate any inconsistencies in the records collected in the
temporary table, it is necessary to compare the values in the
timestamps field of subsequent records. Since all the values in
the timestamps field are expected to follow one another (each
new record is appended at the end of the table), the difference
between two subsequent values in the timestamps field must
be smaller than or equal to zero. A positive difference is an
indication of a timestamp that is out of order and the cause of
this inconsistency is the manipulation of the timestamp. The
SQL query used to detect the records that are inconsistent is
as follows:

SELECT Tl.original_id, TI.timestamps, (TI.timestamps
- T2.timestamps) AS difference FROM temp TI, temp T2
WHERE T2.new_id = Tl.new_id + 1 AND difference>0;

Applying this SQL query to the records in the temporary
table leads to the identification of multiple inconsistencies in
the SMS/MMS SQLite database. The inconsistent records are
listed in Fig.6, showing the manipulated timestamps. The ex-
istence of these inconsistent records in the SMS/MMS SQLite
database invalidates the authenticity of the database. The
examiner must thus decide whether to exclude the manipulated
records from the investigation or only focus the investigation
around the manipulated records.

IV. DISCUSSION AND FUTURE WORK

The exploratory experiments performed while composing
this paper showed that the timestamps found in SQLite
databases can be manipulated by following the technique
described in Section III-A. This technique is currently the
most plausible technique to manipulate timestamps in SQLite
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1536000 May 5 10:32 layer[13]_480x800(4)_1.rau
72960 May 5 10:32 layer[3]_480x38(4)_1.rau
681 Mau_ 6 13:07 poweroff info, txt
540 |May 6 15:28 powerreset_info.txt
63239 May & 11:41 recouery_kernel_log.txt
1 root root 0 May 4 11:41 recovery_last_kernel_log.txt
1 root root 24386 May 4 11:41 recovery_log.txt
-ru-r == 1 shell log 3102|May 6 15:28 rtc.log
root@android: /data/log #

Fig. 4. The /data/log/ directory containing the rtc.log and powerreset_info.txt
files

_| SYSTEM_BOOT@1430918940293.txt - Notepad

| File Edit Format View Help |

Build: samsung/GT-I9100/GT- -
19100:4.1.2/3Z054K/T9100XWL 58 :user/release-keysHardware:
smdk4210BootToader: unknownRadio: unknownKernel: Linux version |=
3.0.31-Siyah-s2-v6.0b4+ (gm@ubuntu) (gcc version 4.4.3 (GCC) )
#57 SMP PREEMPT Wed Dec 26 06:52:48 PST 2012 -

Fig. 5. The SYSTEM_BOOT@[timestamp].txt file generated after a reboot

RecNo original_id [timestamps difference

Click here to define a filter

1 5 1426068243389 656800007
2 7 1426026953724 140410724
3 11 1426480116100 203700427
4 17 1427977953901 733420999

Fig. 6. Inconsistent records found in the sms table of the mmssms.db SQLite
database

databases. Although other techniques can be designed, the
inability to directly alter the data in the WAL file and the
unavailability of the sqlite3 command utility on an Android
smartphone will limit the capabilities and impact the efficiency
of other techniques.

To establish the authenticity of timestamps found in SQlite
databases and detect the potentially manipulated timestamps,
this paper introduced the Authenticity Framework for Android
Timestamps. The framework consists of two methods that
determine the authenticity of timestamps by evaluating the file
system for specific changes and identifying inconsistencies in
the SQLite databases. AFAT is independent of an Android
smartphone and does not require any prerequisites to be
installed on the Android smartphones prior the investigation.
The purpose of AFAT is to give examiners an indication of
whether the timestamps collected in SQLite databases were
tampered with. The results presented by AFAT allow the
examiner to establish the authenticity of the timestamps. Based
on the authenticity of the timestamps, the examiner can decide
to either include or disregard the evidence, associated with the
evaluated timestamps, in the investigation. AFAT is therefore
capable to save crucial time during the investigation and allow
the examiner to arrive at correct and accurate conclusions.
The experiments provided throughout this paper showed that
AFAT is capable of providing the examiner with the necessary
support to establish the authenticity of timestamps in SQLite
databases.

The successful application of AFAT depends, however,
on the following two external factors. Firstly, the skills of
the smartphone user or the sophistication of the malicious
application performing the manipulation can influence the
availability of the AFS-Flags. Smartphone users or the ma-
licious application may be aware of the changes that occur
due to the manipulation of timestamps in SQLite databases.
To prevent detection, these changes can be removed or altered
in an attempt to thwart the examiner performing the investi-
gation. Secondly, the timeframe between the manipulation of
the timestamps and the seizing of the smartphone can also
influence the availability of certain AFS-Flags. An extended
timeframe can cause specific AFS-Flags (such as File size and
System reboot) to be deleted or be overwritten by the Android
OS. Besides these limitations, AFAT still provides an adequate
framework for determining the authenticity of timestamps
found in SQLite databases on Android smartphones. AFAT is
also the first solution provided that is capable of establishing
the authenticity of timestamps after the Android smartphone
has been seized.

The current implementation of AFAT focuses only on
detecting the manipulation of timestamps found in SQLite
databases. Manipulation of timestamps can, however, occur
at multiple locations. The time zone settings of an Android
smartphone, which can be set incorrectly or be changed
(intentionally or unintentionally), can influence the accuracy
of the timestamps found in SQLite databases. Besides the time
zone settings, the actual time of the Android smartphone can
also be manually adjusted by disabling the automatic time
synchronisation feature. Manual adjustments of the time will
impact the timestamps that are generated for the traces stored
in the SQLite databases when certain events occur on the
Android smartphone. It is therefore necessary to incorporate
the evaluation of the time zone and time settings of an Android
smartphone into existing solution provided by AFAT. Future
work will thus focus on identification of the necessary methods
required to establish the accuracy of the time zone and time
settings of a seized Android smartphone. Subsubsection text
here.

V. CONCLUSION

Evidence found, in the form of traces, on smartphones form
an important asset of digital investigations. The timestamps
associated with the traces allow the examiner to construct a
timeline of events. Such a timeline often forms the basis for
further investigation and has the ability to provide answers to
certain questions. Due to the importance of timestamps, it is
necessary for examiners to be able to verify their authenticity.
Collected timestamps might be incorrect due to tampering
and without additional verification, the timestamps will lead
the examiner to make unreliable conclusions. To verify the
authenticity of timestamps found in SQLite databases, this
paper introduced the Authenticity Framework for Android
Timestamps, which establishes the authenticity by following
two methods. The first method identifies the presence of cer-
tain changes in the Android file system, which are indicators of



the manipulation of the SQLite databases. The second method
subsequently focuses on the individual SQLite databases and
the identification of inconsistencies in these databases. The
existence of specific Android file system changes as well
as inconsistencies in existing SQLite databases indicates that
the authenticity of the timestamps might be compromised.
The challenges addressed in the paper were to show that (a)
timestamps can be manipulated in SQLite databases and (b)
identifying that the authenticity of these timestamps has been
compromised. Challenge (a) was addressed by showing the
process that must be followed to successfully manipulate time-
stamps in SQLite databases and challenge (b) was addressed
by applying the methods of the Authenticity Framework for
Android Timestamps. The current paper provides preliminary
evidence that the suggested approach shows potential and
future work will focus on expanding the framework.
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