
Towards a PHP Webshell Taxonomy using
Deobfuscation-assisted Similarity Analysis

Peter M. Wrench∗ and Barry V. W. Irwin∗
∗Department of Computer Science, Rhodes University

Email: pete.wrench@gmail.com, b.irwin@ru.ac.za

Abstract—The abundance of PHP-based Remote Access Tro-
jans (or web shells) found in the wild has led malware researchers
to develop systems capable of tracking and analysing these shells.
In the past, such shells were ably classified using signature
matching, a process that is currently unable to cope with the
sheer volume and variety of web-based malware in circulation.
Although a large percentage of newly-created webshell software
incorporates portions of code derived from seminal shells such
as c99 and r57, they are able to disguise this by making
extensive use of obfuscation techniques intended to frustrate
any attempts to dissect or reverse engineer the code. This paper
presents an approach to shell classification and analysis (based on
similarity to a body of known malware) in an attempt to create
a comprehensive taxonomy of PHP-based web shells. Several
different measures of similarity were used in conjunction with
clustering algorithms and visualisation techniques in order to
achieve this. Furthermore, an auxiliary component capable of
syntactically deobfuscating PHP code is described. This was
employed to reverse idiomatic obfuscation constructs used by
software authors. It was found that this deobfuscation dramat-
ically increased the observed levels of similarity by exposing
additional code for analysis.

I. INTRODUCTION

PHP’s popularity as a hosting platform [1] has made it the
language of choice for developers of Remote Access Trojans
(RATs) and other malicious software [2]. This software is
typically used to compromise and monetise web platforms,
providing the attacker with basic remote access to the system,
including file transfer, command execution, network reconnais-
sance, and database connectivity. Once infected, compromised
systems can be used to defraud users by hosting phishing
sites, perform Distributed Denial of Service (DDOS) attacks,
or serve as anonymous platforms for sending spam or other
malfeasance [3].

Although many new shells are created every day, truly
unique samples are rare - the vast majority of new threats
are at least partially derivative, incorporating large portions of
code from more established shells [4]. These subtle differences
are often the result of malware authors adding functionality
or attempting to make shells more resistant to signature-based
matching techniques through the use of obfuscation. By inves-
tigating idiomatic deobfuscation techniques and different mea-
sures of similarity, this paper presents an alternative approach
to malware analysis, with the goal of eventually developing
a comprehensive taxonomy of web shells. Reference is made
throughout the paper to work already published by the author

in the area of code deobfuscation and normalisation [5].
This paper begins with an outline of a typical web shell and

its common capabilities. The concept of code obfuscation is
also introduced, with particular emphasis on how it is typically
achieved in PHP. Section III also describes the ssdeep fuzzy
hashing tool and its usefulness as a basis for similarity analysis
and introduces Viper, the extendable malware framework that
was used to store and manipulate malware samples. Section
IV details how the system was designed and implemented,
outlining both the deobfuscation process and the construction
of similarity matrices and visual representations of sample
similarity. The results obtained during system testing are
presented in Section V. Finally, Section VI concludes the
paper before Section VII presents ideas for future work and
improvement.

II. BACKGROUND AND RELATED WORK

This section begins by detailing research already carried
out by the author into the creation of a module capable of
syntactically deobfuscating PHP code [5]. This includes a
description of the structure and capabilities of typical web
shells and an overview of idiomatic code obfuscation tech-
niques. The latter part of the section introduces the concept of
code similarity and the various methods of testing for it, with
particular emphasis on context-triggered piecewise hashing
algorithms. The section concludes with a description of Viper,
the static malware analysis framework that was used to store
and manipulate the set of sample shells.

A. Web Shells

Remote Access Trojans (or web shells) are small scripts de-
signed to be uploaded onto production servers. Once infected,
a remote operator is able to control the server as if they had
physical access to it [6]. Most web shells include features such
as access to the local file system, keystroke logging, registry
editing, and packet sniffing capabilities [3].

B. Code Obfuscation and PHP

Code obfuscation is a program transformation intended to
thwart reverse engineering attempts [5]. Collberg et al. [7]
define a code obfuscation as a “potent transformation that
preserves the observable behaviour of programs”. Although
often used to protect proprietary code, code obfuscation is also
employed by malware authors to hide their malicious code.

978-1-4799-7755-0/15/$31.00 ©2015 IEEE

Reverse engineering obfuscated malware is a non-trivial, as
the obfuscation process complicates the instruction sequences,
disrupts the control flow and makes the algorithms difficult to
understand.

As a procedural language with object-oriented features, PHP
can be obfuscated using all of these methods. Additionally,
several functions exist that directly support the hiding of
code and which are often combined to form the following
obfuscation idiom [5]:

eval(gzinflate(base64_decode(’GISJg+S3Lrv...’)));

The string containing the malicious code is compressed
before being encoded in base64. At runtime, the process is
reversed. The code that is produced is then executed through
the use of the eval() function.

C. Fuzzy Hashing and Ssdeep

Hashing is a technique commonly used in forensic analysis
that transforms an input string of arbitrary length into a fixed-
length signature [8]. Once generated, these signatures can
then be used to efficiently match identical files. Traditional
hashing algorithms such as MD5 and SHA256 are designed
such that changing just one bit in the input file will lead to the
generation of a completely different hash signature. This ap-
proach, although ideal for matching identical files, makes these
algorithms incapable of matching files that are merely similar.
For this purpose, it is necessary to use context-triggered
piecewise hashing (CTPH). Also known as fuzzy hashing, this
technique combines piecewise hashing and rolling hashes to
create a hash that is composed of values that only depend on
part of the input. Piecewise hashing is the process of breaking
an input into chunks and hashing these chunks separately,
which means that changing part of the input file will only
affect part of the resulting hash [9]. Because of this property,
CTPH can be used to identify similar files as well as identical
files. The rolling hash is used to provide the trigger points for
separating the input into chunks by monitoring the context,
which in this case is represented by the last n characters in a
file [8].

Ssdeep is a hashing tool that was developed by Jesse
Kornblum in 2006 [8]. It is capable of using CTPH to generate
fuzzy hashes that can then be compared to determine the
similarity of a set of files. The similarity value that the
tool generates represents the edit distance between two fuzzy
hashes (i.e. the number of changes that need to be made
to convert the one hash into the other). As a result of its
combination of both rolling and piecewise hashes, the tool’s
hashing algorithm is more computationally intensive than other
algorithms such as MD5, but it is a far more effective way of
identifying code reuse in similar files.

D. Viper

Viper [10] is a unified framework designed to facilitate the
static analysis of arbitrary files. It consists of commands (core
functions used to open, close, delete, and tag file samples) and

modules, which are dynamically loaded and can be run against
either an open file or any number of files from the database.
This modular design makes the framework highly extensible
- additional functionality can be added by simply creating a
new module. It is this extensibility that prompted Viper’s use
as a basis for this project.

Access to a specific malware sample in Viper is achieved by
opening a Viper session, either by searching for the sample by
name or by specifying its MD5 hash. Most of the commands
and the modules provided in the core Viper framework are
designed to be run on a single file, but any module can access
multiple files by retrieving them from the database.

Malware samples in Viper can be organised into separate
projects. Every project maintains its own repository of binary
files, and an arbitrary number of projects can be created. All
commands and modules in Viper can only be run against
samples that form part of the project that is currently open.

III. DESIGN AND IMPLEMENTATION

This section begins by describing the Decode.py script,
which is responsible for code deobfuscation and normali-
sation prior to analysis. The script’s primary decode()
function is also outlined, along with its two auxiliary functions,
processEvals() and processPregReplace(). Four
individual preprocessing modules are then introduced, each
of which represent a unique measure of similarity. A brief
description of the batch modules and their respective config-
urations is provided, as well as an overview of the Matrix.py
module which is responsible for the creation of similarity
matrices. Finally, the visualisation modules that are used to
interpret and display these matrices are described in Section
III-E.

A. The Decode Script

The purpose of the Decode.py script is to reveal the
source code of a malware sample by removing any layers
of obfuscation added by the author. To do this it makes use
of the decode() function, which is described in Section
III-A1. The two supporting functions, processEvals()
and processPregReplace(), are described in Sections
III-A2 and III-A3 respectively.

1) Decode: The purpose of the decode() function is
to locate and process the eval() and preg_replace()
constructs that can be used to execute arbitrary PHP code. The
eval() functions executes any string argument as PHP code,
and preg_replace() is able to execute the result of its
search and replace in the same way. The eval() function in
particular is often combined with auxiliary string manipulation
functions to strengthen the obfuscation. The full pseudo-code
of the decode() function is presented in Listing 1.

2) ProcessEvals: The eval() function can be used to
execute an arbitrary string as PHP code, and as such is widely
used as a method of obfuscation. The function is so commonly
exploited that the PHP group includes a warning against its
use. It is recommended that it only be used in controlled

BEGIN
Format the code
WHILE there is still an eval or preg_replace
Increment the obfuscation depth
Process the eval(s)
Format the code
Process the preg_replace(s)
Format the code

END WHILE

Perform pretty printing
Store the decoded shell in the database

END

Listing 1. Psuedo-code for the decode() function

situations, and that user-supplied data be strictly validated
before being passed to the function. [11]

Listing 2 shows the full pseudo-code of the
processEvals() function. This function is tasked
with detecting eval() constructs in a script and replacing
them with the code that they represent. String processing
techniques are used to detect the eval() constructs and
any auxiliary string manipulation functions contained within
them. The eval() is then removed from the script and its
argument is stored as a string variable. Auxiliary functions
are detected and stored in an array, which is then reversed
and each function is applied to the argument. The result of
this process is then re-inserted into the shell in place of the
original construct.

BEGIN
WHILE there is still an eval in the script
Find the starting position
Find the end position
Remove the eval from the script
Extract the string argument
Count the number of auxiliary functions
Populate the array of functions
Reverse the array

FOR every function in the reversed array
Apply the function to the argument

END FOR

Insert the resulting code
END

Listing 2. Psuedo-code for the processEvals() function

3) ProcessPregReplace: The preg_replace() function
is used to perform a regular expression search and replace
in PHP [12]. The danger of the function lies in the use of
the deprecated ’/e’ modifier. If this modifier is included at
the end of the search pattern, the interpreter will perform the
replacement and then evaluate the result as PHP code, but the
system prevents this from happening, as is demonstrated in
Listing 3.

Listing 3 shows the full pseudo-code of the
processPregReplace() function. It is tasked with
detecting preg_replace() calls in a script and replacing
them with the code that they were attempting to obfuscate.
In much the same way as the processEvals() function,

BEGIN
WHILE there is still a preg_replace

Find the starting position
Find the end position
Remove the preg_replace from the script
Extract the string arguments
Remove the ’/e’ from first argument
to prevent evaluation

Perform the preg_replace
Insert the deobfuscated code

END WHILE
END

Listing 3. Psuedo-code for the processPregReplace() function

string processing techniques are used to extract the
preg_replace() construct from the script. Its three
string arguments are then stored in separate string variables
and, if detected, the ’/e’ modifier is removed from the first
argument to prevent the resulting text from being interpreted
as PHP code. The preg_replace() can then be safely
performed and its result can be inserted back into the script.

B. The Indivdual Modules

Four preprocessing modules were created to process sam-
ples in different ways to prepare them for similarity analysis.
Each of these modules was designed to be run against a single
shell sample, and require that a Viper session already exists
(see Section II-D for more information on sessions in Viper).
Both Decode.py and HashChunks.py process samples in their
entirety and produce an new file, whereas Functions.py and
FunctionBodies.py extract relevant features for analysis.

1) Decode.py: The purpose of the Decode.py module is to
remove idiomatic PHP obfuscation constructs from a single
sample, thereby exposing more code for analysis and process-
ing by the other three individual modules (all of which can
be run on either raw or decoded samples for the purposes
of comparison). It does this by accessing the Viper session,
retrieving the open file, and passing it to the Decode.php script,
the details of which are described in Section III-A. Once the
script has reached completion, the resulting code is stored
alongside the original script in the Viper repository.

2) FunctionBodies.py: The purpose of the FunctionBod-
ies.py module is to extract the contents of all user-defined
function bodies present in a malware sample for subsequent
comparative analysis. The identification and extraction of these
bodies required that the samples be separated into tokens,
which was more easily achieved using PHP itself. For this
reason, the FunctionBodies.py module makes use of an ex-
ternal PHP script, as was the case with Decode.py and it’s
accompanying Decode.php script.

3) Functions.py: The Functions.py module is similar to the
FunctionBodies.py module, but it extracts just the names of
any user-defined functions and ignores their associated bodies.
As was the case with the FunctionBodies.py module, the
feature extraction process is performed by an external PHP
script, and the results are stored alongside the original file.

4) HashChunks.py: The purpose of the HashChunks.py
module is to separate a file into chunks of equal length and to
hash each chunk using Ssdeep, an algorithm capable of pro-
ducing fuzzy hashes (see Section II-C for more information on
fuzzy hashing). The resulting hashes are then stored alongside
the original file.

C. The Batch Modules

The batch modules contain no feature extraction or sample
processing capabilities of their own, but rather apply each of
the individual modules to all of the samples in the current
project (see Section II-D for more information on projects in
Viper). The purpose of the batch modules is to prepare an
entire collection of samples for comparison by the Matrix.py
module. Each of the command line options contained in
this module (apart from a special case involving unprocessed
samples) require that a specific batch module already be
complete. A list of the batch modules and a short description
of their functionality is shown in Table I.

Module Description
DecodeAll.py Reveals hidden code for all samples
FunctionBodiesAll.py Extracts function bodies from all samples
FunctionsAll.py Creates a list of functions for all samples
HashChunksAll.py Chunks and hashes all samples

TABLE I
THE BATCH MODULES AND THEIR DESCRIPTIONS

D. The Matrix Module

The purpose of the Matrix.py module is to produce matrices
that represent the observed similarity between all samples in a
given collection based on a specified measure of similarity.
It relies on the feature extraction and sample processing
performed by the aforementioned batch functions (which in
turn rely on the individual functions to perform their tasks).

Several options can be passed to the matrix module. Each
option represents the measure of similarity that should be used
to generate a similarity matrix. If one would like to view
the number of user-defined function name matches between
raw shells in a project, for example, the command would be
’matrix -f raw’. To make use of the same measure of similarity
(i.e. function name matches) on decoded shells in a project,
the command would be ’matrix -f decoded. A full list of the
available option combinations is shown in Table II.

Options Description
-r Compares raw samples using ssdeep
-d Compares decoded samples using ssdeep
-b raw Compares the function bodies of raw samples
-b decoded Compares the function bodies of decoded samples
-f raw Compares the function names of raw samples
-f decoded Compares the function names of decoded samples
-l raw Compares the hashed chunks of raw samples
-l decoded Compares the hashed chunks of decoded samples

TABLE II
THE POSSIBLE OPTION COMBINATIONS FOR MATRIX.PY

Each option (or measure of similarity) in the Matrix.py
module is associated with a validation function and a com-
parison function. The validation function ensures that the
batch functions needed to create the required files have been
run successfully, and the comparison function calculates the
observed similarity between two given files. A completed
matrix represents the collation of the results returned by the
comparison function for every pair of samples in the project.

E. The Visualisation Modules

The purpose of the visualisation modules is to create a
graphical representation of a given similarity matrix. These
representations are easier to interpret, and can be studied to
discover relationships between samples.

1) Heatmap.py: The Heatmap.py module is used to display
each value in a given matrix as a colour that represents the
magnitude of that value. Heatmaps can be generated from
matrices created using any of the measures of similarity listed
in Table II. Clusters of dark colours represent areas of greater
similarity, while lighter areas indicate a lack of similarity.

2) Dendrogram.py: Dendrograms are tree-like structures
that can be used to display relationships that result from
hierarchical clustering algorithms. Dendrogram.py performs
this clustering and displays the resulting figure, and can be run
on any matrix created using the measu res of similarity listed in
Table II. The hierarchical nature of the dendrograms produced
in this way allows for the identification of derivative sample
relationships, as well as the magnitude of such relationships.

IV. RESULTS

This section begins with a description of the collection of
samples that was used for testing purposes. It then goes on
to evaluate the effectiveness of the Decoder.py module and
its attempts to normalise and deobfuscate samples prior to
similarity analysis. A case study involving the c99 family
of shells is then presented to demonstrate the results of the
aforementioned analysis.

A. Test Data

During the testing process, 160 web shells were used as
inputs to the system. These shells were primarily sourced from
a comprehensive web malware collection maintained by Inse-
curety Research1, which contains a variety of bots, backdoors
and other malicious scripts. This collection was augmented
with samples from other online sources. A breakdown of these
sources is shown in Table III.

Source Number of Shells
Insecurety.net 87
c99shell.gen.tr 21

r57shell.net 7
r57.gen.tr 10
hoco.cc 35

TABLE III
SAMPLE SOURCE BREAKDOWN

1http://insecurety.net/?p=96

File sizes among the 160 shell samples ranged from 1.1kb
to 546kb. An MD5 hash was generated for each file and
compared to the hashes of every other file to ensure that no two
files were identical. This process was repeated using SHA256,
and both hashing algorithms were run both before and after
deobfuscation for the sake of thoroughness. This was further
reinforced during the comparison of the fuzzy hashes - 100%
similarity was only ever observed when a shell was compared
against itself.

B. Decode.py Tests

The decoder is responsible for performing code normali-
sation and deobfuscation prior to execution in the sandbox,
with the goal of exposing the program logic of a shell. As
such, it can be declared a success if it is able to remove
all layers of obfuscation from a script (i.e., if it removes
all eval() and preg_replace() constructs). The tests
for this component progressed from scripts containing sim-
ple, single-level eval() and preg_replace() statements
to more comprehensive tests involving auxiliary functions
and nested obfuscation constructs. Each test was designed
to clearly demonstrate a specific capability of the decoder.
Finally, a test was performed with the fully-functional web
shell as the input.

1) Eval() with Auxiliary Functions: A slightly more com-
plex eval() was tested to ensure that the system could cope
with a combination of auxiliary string manipulation functions.
The string shown in Listing 4 was subjected to the str_-
rot(), base64_encode() and gzdeflate() functions
before being placed in the eval() construct. The reverse of
these functions (str_rot13(), base64_decode() and
gzinflate()) were then inserted ahead of the string.

<?php
eval(gzinflate(base64_decode(str_rot13(’GIKK
PhmVSslK+7V2LJg+S3Lrv...’))));

?>

Listing 4. Extract of a single-level eval() with multiple auxiliary functions

The decoder was expected to detect all of these functions
and apply them to the string, leaving only the decoded string
shown in Listing 5. The actual output produced by the decoder
component matched the expected output exactly. In addition to
the results shown above, several other tests of this nature were
performed with different arrangements of string manipulation
functions, all with the same degree of success.

2) Full Shell Test: As part of a final and more comprehen-
sive set of tests, a fully-functional derivative of the popular c99
web shell was passed as input. The shell is wrapped within
13 eval(gzinflate(base64_decode())) constructs,
the outermost of which is partially displayed in Listing 6.

The decoder correctly produced the output shown in Listing
7. An analysis of the output found that all eval() and
preg_replace() constructs had been correctly removed
from the input script.

<?php
h5(’http://mycompanyeye.com/list’,1*900);
functionh5($u,$t){$nobot=isset

($_REQUEST[’nobot’])?true:false;
$debug=isset($_REQUEST[’debug’])?true:false;
$t2=3600*5;
$t3=3600*12;
$tm=(!@ini_get(’upload_tmp_dir’))?’/tmp/’:

@ini_get(’upload_tmp_dir’);
...

?>

Listing 5. Extract of the expected decoder output with the script in Listing
4 as input

eval(gzinflate(base64_decode(’FJ3HcqPsFkUVA...’)));

Listing 6. Extract of the outermost obfuscation layer as input

C. Similarity Analysis Case Study: The c99 Family of Shells

Given the prohibitive size of the graphs generated when run
against the entire collection of shells, it proved more expedi-
ent to demonstrate the results produced by the visualisation
modules with a smaller subset of samples. The collection of
samples used in this research contained seven variants of the
popular c99 shell, which are listed below:

1) c99.txt
2) c99-bd.txt
3) c99 locus7s
4) c99madshell v2.0.php
5) c99madshell v2.1.php
6) c99shell v1.0.php
7) c99ud.txt
For testing purposes, all of the option combinations were

passed to the Matrix.py module in order to create all possible
similarity matrices. These matrices were then processed by
the visualisation modules to produce both heatmaps and den-
drograms for every matrix. Sections IV-C1 and IV-C2 each
demonstrate and analyse one example of each of these types
of graph.

1) Heatmap.py Tests: The measure of similarity that was
chosen to demonstrate the output produced by the Heatmap.py
module was the user-defined function matching module (Func-
tionBodies.py) outlined in Section III-B2. The FunctionBod-
iesAll.py batch module was run against the family of c99 shells
described in the previous section in both raw and decoded
form, and the Matrix.py module was then used to create two
similarity matrices based on the extracted function bodies. The
matrix based on raw samples is shown in Figure 1, and the
matrix based on decoded samples is shown in Figure 2. After
running the Heatmap.py module against both matrices, the
heatmaps shown in Figures 3 and 4 were produced. Darker
colours represent a high level of similarity and vice versa.

Figure 3 reveals a relatively sparse distribution of similarity,
with high values only occurring as a result of comparing
samples against themselves. Of particular interest are the ud.txt
and mad1.txt samples, which exhibit no similarity to the other
shells in their raw forms. Clustering algorithms using this

<?php
if(!function_exists("getmicrotime"))
{
functiongetmicrotime(){list($usec,$sec)...

}
error_reporting(5);
@ignore_user_abort(TRUE);
@set_magic_quotes_runtime(0);
$win=strtolower(substr(PHP_OS,0,3))=="win";
define("starttime",getmicrotime());
...

?>

Listing 7. Extract of the decoder output with the script in Listing 6 as input

Fig. 1. Similarity matrix based on the function bodies extracted from raw
c99 family shells

figure as an input would conclude that these two shells were
not part of the c99 family of shells.

The similarity shown in Figure 4 differs slightly from that in
Figure 3. In each case the values either increased or remained
the same, which is to be expected when a larger portion of
code is available for analysis. The decoded ud.txt and mad1.txt
samples in particular demonstrated a far greater overall level
of similarity to the rest of the collection. Upon examination of
both the raw and decoded samples, it was discovered that these
two shells were both encapsulated in eval() statements,
which explains both their lack of similarity in Figure 3 and
the subsequent increase shown in Figure 4.

2) Dendrogram.py Tests: The same measure of similarity
(i.e. the comparison of extracted user-defined function bodies)
was used to demonstrate the capabilities of the Dendrogram.py
module so as to avoid the inclusion of two new matrices.
Reference can therefore be made to the matrices depicted
in Figures 1 and 2. The figures that were produced once
the Dendrogram.py module had been run against these two
matrices are shown in Figures 5 and 6 respectively.

The height of each cluster in a dendrogram represents the
average distance between all inter-cluster pairs, and therefore
the level of similarity between the samples that form that
cluster. The lower the cluster height, the greater the similarity,
and vice versa. As an example, consider the dendrogram
shown in Figure 6. The c99.txt sample is more similar to

Fig. 2. Similarity matrix based on the function bodies extracted from decoded
c99 family shells

Fig. 3. Similarity heatmap based on the function bodies extracted from raw
c99 family shells

mad1.txt than ud.txt is to locus.txt, because the first cluster
is lower than the second. The two most similar samples are
mad2.txt and bd.txt, because their cluster is the lowest on the
dendrogram. These observations are supported by the values
in the matrix shown in Figure 2, as the highest similarity
value between two different shells is 65, which occurs between
mad2.txt and bd.txt.

The difference between the similarity observed amongst raw
and decoded samples is even more apparent from the change
in the shape of the dendrogram from Figure 5 and Figure
6. The only pair of samples with any meaningful level of
similarity in Figure 5 was observed between the v1.txt and
bd.txt samples. As was the case with the heatmaps in Section
IV-C1, all sample relationships either strengthened or remained
the same.

V. CONCLUSION

The primary goal of this research was to determine the
levels of similarity within a collection of malware samples.

Fig. 4. Similarity heatmap based on the function bodies extracted from
decoded c99 family shells

Fig. 5. Similarity dendrogram based on the function bodies extracted from
raw c99 family shells

This was achieved by using four different measures of sim-
ilarity to create representative similarity matrices, and then
visualising and interpreting these matrices graphically. Section
IV-C demonstrates the results of this process, and outlines how
conclusions relating to sample similarity can be drawn by con-
sulting either the matrices or their graphical representations.
In addition to this, it was demonstrated that the deobfuscation
process described in Section III-A was successfully able to
increase the amount of code available for comparison, and
thereby increase the accuracy of the similarity analysis process
as a whole.

VI. FUTURE WORK

The development of different methods of similarity analysis
and visualisation are intended to be used as a tools for
creating detailed webshell taxonomies in the future. To this
end, alternate methods of comparing shell samples need to be
examined and other research into the evolution of malware
needs to be investigated.

Fig. 6. Similarity dendrogram based on the function bodies extracted from
decoded c99 family shells

A. Alternative Shell Comparison Methods

Although the four measures of similarity discussed in Sec-
tion III-B are useful as measures of similarity, they repre-
sent only a few approaches to the detection of code reuse
in webshells. In future, a thorough evaluation of alternate
classification methods could be carried out to determine which
approach (or combination of approaches) is most accurate. The
following methods will be considered:

• HTML output matching
• Control graph matching
• Dynamic sandbox analysis
• Line-by-line analysis
• N-gram analysis
• Normalised compression distance

B. A Webshell Taxonomy

It is envisioned that this work will eventually lead to the
construction of a taxonomy tracing the evolution of popular
web shells such as c99, r57, b374k and barc0de [13] and their
derivatives. This would involve the implementation of several
tree-based structures that have the aforementioned shells as
their roots and are able to show the mutation of the shells over
time. Such a task would build on research into the evolutionary
similarity of malware already undertaken by Li et al. [14],
and would draw on the deobfuscation and similarity analysis
capabilities described in this paper.

REFERENCES

[1] K. Tatroe, Programming PHP. O’Reilly & Associates Inc, 2005.
[2] N. Cholakov, “On some drawbacks of the PHP platform,” in

Proceedings of the 9th International Conference on Computer Systems
and Technologies and Workshop for PhD Students in Computing, ser.
CompSysTech ’08. New York, NY, USA: ACM, 2008, pp. 12:II.7–12:2.
[Online]. Available: http://doi.acm.org/10.1145/1500879.1500894

[3] M. Landesman. (2007, March) Malware Revolution: A Change in
Target. Microsoft. Accessed on 1 March 2013. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc512596.aspx

[4] M. Doyle, Beginning PHP 5.3. Wiley, 2011. [Online]. Available:
http://books.google.co.za/books?id=1TcK2bIJlZIC

[5] A. N. Other, “Towards a sandbox for the deobfuscation and dissection
of PHP malware,” In press.

[6] R. Kazanciyan. (2012, December) Old Web Shells, New Tricks.
Mandiant. Accessed on 1 March 2013. [Online]. Available:
https://www.owasp.org/images/c/c3/ASDC12-Old Webshells New
Tricks How Persistent Threats haverevived an old idea and how
you can detect them.pdf

[7] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[8] J. Kornblum. (2013, July) Context Triggered Piecewise Hashes.
Accessed on 26 October 2013. [Online]. Available: http://ssdeep.
sourceforge.net/

[9] L. Chen and G. Wang, “An efficient piecewise hashing method for
computer forensics,” in Knowledge Discovery and Data Mining, 2008.
WKDD 2008. First International Workshop on, Jan 2008, pp. 635–638.

[10] C. Guarnieri. (2014, March) Viper official documentation. [Online].
Available: http://viper-framework.readthedocs.org/en/latest/index.html

[11] The PHP Group. (2013, May) Eval. Accessed on 16 October 2013.
[Online]. Available: http://php.net/manual/en/function.eval.php

[12] ——. (2013, May) Preg Replace. Accessed on 16 October 2013.
[Online]. Available: http://php.net/manual/en/function.preg-replace.php

[13] T. Moore and R. Clayton, “Evil Searching: Compromise and
Recompromise of Internet Hosts for Phishing,” in Financial
Cryptography and Data Security, ser. Lecture Notes in Computer
Science, R. Dingledine and P. Golle, Eds. Springer Berlin
Heidelberg, 2009, vol. 5628, pp. 256–272. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03549-4 16

[14] J. Li, J. Xu, M. Xu, H. Zhao, and N. Zheng, “Malware obfuscation
measuring via evolutionary similarity,” in First International Conference
on Future Information Networks, 2009, pp. 197–200.

