
SMT-Constrained Symbolic Execution Engine for
Integer Overflow Detection in C Code

Paul Muntean, Mustafizur Rahman, Andreas Ibing, and Claudia Eckert
Technische Universität München, Department of Informatics

Boltzmannstraße 3, 85748 Garching, Germany
Email: {paul, mustafizur, ibing, eckert}@sec.in.tum.de

Abstract—Integer overflow errors in C programs are difficult
to detect since the C language specification rules which govern
how one can cast or promote integer types are not accompanied
by any unambiguous set of formal rules. Thus, making it difficult
for the programmer to understand and use the rules correctly
causing vulnerabilities or costly errors. Although there are many
static and dynamic tools used for integer overflow detection, the
tools lack the capacity of efficiently filtering out false positives and
false negatives. Better tools are needed to be constructed which
are more precise in regard to bug detection and filtering out false
positives. In this paper, we present an integer overflow checker
which is based on precise modeling of C language semantics
and symbolic function models. We developed our checker as an
Eclipse plug-in and tested it on the open source C/C++ test case
CWE-190 contained in the National Institute of Standards and
Technology (NIST) Juliet test suite for C/C++. We ran our checker
systematically on 2592 programs having in total 340 KLOC with
a true positive rate of 95.49% for the contained C programs and
with no false positives. We think our approach is effective to be
applied in future to C++ programs as well, in order to detect
other kinds of vulnerabilities related to integers.

Index Terms—software vulnerability, information security,
context-sensitive analysis

I. INTRODUCTION

In the 2011 top 25 most dangerous software errors [22]
MITRE classifies integer overflows as the main source for
different types of software vulnerabilities. Integer overflow
errors are responsible for a series of vulnerabilities in the
OpenSSH [23] and Firefox [24], both allowing attackers to
execute arbitrary code. Software failures can materialize in
reality as for example during the crash of the Ariane 5 flight
501 in 1996 due to an attempt to cast a floating point value to
a 16-bit integer value which resulted in a truncation error.

Integer numerical errors in software applications are costly,
hard to detect—there are a couple of types of integer overflows
and some of them are inserted into code intentionally and
others unintentionally—and exploitable. According to Brumley
and colleagues [5] there are four types of integer related
problems: (1) overflow (occurs at run-time when the result
of an integer expression exceeds the maximum value for its
respective type), (2) underflow (appears at run-time when the
output of an integer expression is less than the minimum
value that the assignee can hold, thus ”wrapping” to the
maximum integer for the type), (3) signedness (occurs when
a signed integer is interpreted as unsigned, or vice-versa) and
(4) truncation (appears when an integer with smaller width—
number of bits—has to hold an integer with larger width).
Furthermore, there are intentional or unintentional uses of

integer overflows and illegal uses of operations such as shifts
which could lead to integer related errors.

Typical indirect integer (integer related problems are typ-
ically exploited indirectly, contrary to e.g., buffer overflows
which can be exploited directly or indirectly) bug exploitations
are: (a) Denial of Service (DoS) attacks where the exploit
causes infinite loops or excessive memory allocation, (b)
arbitrary code can be executed when an integer vulnerability
results in insufficient memory allocation which afterwards can
be exploited by buffer overflows, heap overflows and overwrite
attacks, (c) an upper bound sanitization check can be bypassed
when unexpected negative integer values are used, (d) a logic
error, where a reference counter in the NetBSD OS (CVE-
2002-1490) [25] was manipulated by an attacker that resulted
in the premature freeing of an object from memory and (e)
array index attacks are caused by a vulnerable integer value
which can be used as array index so that attackers can precisely
overwrite arbitrary bytes in memory.

These types of integer related problems can be addressed
with code analysis techniques (e.g., static and dynamic code
analysis), formal modeling of C semantics, Extended Static
Checking (ESC)—usage of code annotations, Satisfiable Mod-
ulo Theories (SMT) solver, test cases to trigger the bug, com-
piler integration (Clang), formal modeling of integer typing
rules, etc. Typical dynamic analysis have low overhead ≈5%,
low true positives and false negatives rate, reduced path cov-
erage, etc. On the other side static analysis offers environment
models, bit precision, low number of false positives, high path
coverage, etc.

In this paper we address integer overflow vulnerabilities
through precise symbolic ”modeling” of C language semantics
which are responsible for integer overflows and C function
models. Concretely, we extended the C statement processing
component of our engine and carefully remodeled each exter-
nal (C standard library and any other used API) used function
through usage of symbolic function models. Thus, providing
a precise modeling of C language semantics is the key for a
high false positives and low false negatives rate.

In summary, we make the following contributions: (i)
Precise symbolic modeling of C related semantics needed
for integer overflow detection, §III. (ii) An integer overflow
checker Eclipse plug-in based on our static execution engine,
§IV and automated testing based on automatically generated
jUnit test cases and Eclipse projects, V-B and V-C. (iii)
Experimental evaluation of our approach on the open source
C/C++ test case CWE 190 Integer Overflow [33], §V.

978-1-4799-7755-0/15/$31.00 ©2015 IEEE

The remaining paper is organized as follows: §III presents
the design and architecture of our engine. §IV presents imple-
mentation details of our integer overflow checker. §V contains
the evaluation of our approach. §II presents related work.
Finally, §VI contains the discussion and future work.

II. RELATED WORK

Research on detecting integer problems focuses primarily
on integer overflow vulnerabilities, either employing dynamic
or static code approaches [10] which run on binary or source
code. The static approaches are mostly based on an analysis
framework and added run-time checks at certain interesting
points in code (e.g., assignments, x := expr.) located on
satisfiable program paths.

The static analysis tool UQBTng [35] decompiles the
binary files and then uses model checking based on CBMC [9]
to detect integer overflows. IntScope [34] first transforms the
analyzed binaries into an intermediary representation (IR) and
based on symbolic execution and taint analysis it checks for
integer overflows. These two approaches operate on binary
files and can not figure out the original variables data types
since these get lost during the compilation process whereas
our approach can use the original variables data types from
source code. ARCHERR [8] can examine million lines of
source code but can not deal with string operations and has
on average 35% of false positives whereas our approach has
a lower false positives rate. Microsoft’s PREfast [21] is used
during source code compile time and relies on source code
annotations which is integrated in the Microsoft VS IDE and
are provided in advance. Our approach does not require costly
annotations. On the other hand we think that the annotations
represent an useful source of information which is typically
not available during static analysis. Microsoft’s PreFix [21] is
based on the Z3 [21] solver, runs on large legacy C/C++ source
code repositories in order to find a wide range of problems
related to integers and uses a ranking mechanism to filter out
false positives. Our tool compared to PreFix focuses on only
one type of integer related problems (integer overflows) by
using C function models whereas the PreFix tool does not
use function models. Ceesay and colleagues [6] added type
qualifiers to detect integer overflow problems. Their approach
relies on expensive system extensions which are linked into
the compiler and are used to check the code for integer
errors. Their approach requires user annotation whereas our
approach does not require annotations. Ashcraft et al. [2] and
Sarkar et al. [30] used bounds checking and taint analysis to
see if untrusted values are used in trusted sinks. These two
approaches are based on insensitive information flow whereas
our approach is context sensitive.

The dynamic analysis tools are used to detect integer
related problems: RICH [5], BRICK [7], SmartFuzz [26],
SAGE [14] and IOC [11]. RICH [5] instruments programs
to detect safe and unsafe operations based on well-known
sub-typing theory. BRICK [7] detects integer overflows in
compiled executables using a modified Valgrind [28] version.
Its accuracy and efficiency depend on the test input used to
exercise the instrumentation. It is either slow (50× slowdown)
or has many false positives. SmartFuzz [26] is also based on
Valgrind, but it uses dynamic test generation techniques to
generate inputs, leading to good test coverage. SAGE [14] uses

dynamic test generation, but it targets fewer integer problems
than SmartFuzz. IOC [11] is an integer overflow and underflow
problems detection tool integrated with the Clang compiler.
Compared with our approach these tools can neither exercise
all bugs due to dynamically generated test cases nor full path
coverage can be achieved.

III. ENGINE DESIGN AND ARCHITECTURE

Figure 1 presents the engine architecture [18] on which our
integer overflow checker is based. Starting point for the design
of our integer overflow checker is the multi-threaded symbolic
execution engine with backtracking described in [18], which
can analyze multi-threaded C programs. It performs inter-
procedural analysis and is implemented according to the tree-
based interpreter pattern [29]. The engine implementation is
multi-threaded which means that control flow graphs and syn-
tax trees are shared between worker threads. It relies on a SMT
solver as logic backend and translates C code into SMT-Lib [3]
logic equations in the logic of Arrays, Uninterpreted Functions,
Non-linear Integer and Real Arithmetic (AUFNIRA). Figure 1
contains the main classes of our engine and the interface
IChecker, which makes the plug-in usable from CDT’s code
analysis framework [4]. Several Workers concurrently explore
different parts of a program’s execution tree. Each worker has
an Interpreter together with a memory system model to store
and retrieve symbolic variables (whose values are logic SMT-
Lib equations). The translation of Control Flow Graph (CFG)
nodes into SMT-Lib syntax is performed by the StatementPro-
cessor (which extends CDT’s abstract syntax tree visitor class)
according to the visitor pattern [13]. The BranchValidator
detects unsatisfiable branches in a program path with the help
of the SMTSolver. WorkPool is used as synchronization object
between the Workers and the WorkPoolManager.

We briefly present the main classes of our engine denoted
with capital letters. For a more detailed description see [17].
WorkPoolManager implements the interface IChecker which
is present in the Codan API. The WorkPoolManager starts
workers and reports found errors through the Codan interface
to the Eclipse marker framework. ProgramStructureFacade
provides access to control flow graphs. WorkPool is used as
synchronization object (synchronized methods) which is used
to track the number of active workers and to exchange split
paths. Worker has a forward and a backward (backtracking)
mode which passes references to control flow graph nodes
for entry (forward mode) or backtracking to the Interpreter.
Interpreter follows the tree- based interpreter pattern [29].
SMT syntax is generated by the StatementProcessor (which
implements CDT’s ASTVisitor) by bottom-up traversal of
Abstract Syntax Tree (AST) sub-trees (visitor pattern), which
are referenced by CFG nodes. Symbolic variables are stored
in and retrieved from MemSystem. The interpreter further
offers an interface to BranchValidator and to checker classes.
SMTSolver wraps the interface to the Z3 [12] external solver.
BranchValidator is triggered when entering a branch node
and generates a smtlib query for the path constraint. For an
unsatisfiable branch it throws an exception which is further on
caught by the worker. Environment provides symbolic models
of standard library functions. StatementProcessor extends the
ASTVisitor class contained in the Codan API. In this class each
statement contained on an execution path is visited in order to
create our symbolic variables and the SMT constraint system

WorkPoolManager

WorkPool

-reportSATPath(Path)

InterleavingGenerator

-partialOderDFS()

Worker
1

n

ProgramStructureFacade

n

1

Interpreter

GlobalMemSpace

InterpreterInterpreter

FunctionSpaceStack

PThread

Environment

SMTSolver

ActionLog

StatementProcessor

1

1ThreadCreate

MutexLock

SharedVarDefine

ThreadJoin

RaceChecker

-check(Path)

ThreadState

n

1

IM
TA

ct
io

n
BoundsChecker

IntegerOverflowChecker

BranchValidator

PathAbstractor

-updateCreateThread()

org.eclipse.cdt.core.dom.ast.ASTVisitor

IPathObserver

(Other Checkers)

IntegersUpperBoundsLoopNonTermChecker

1

n
TimeWatch

StatementLogger

org.eclipse.cdt.codan.core.model.IChecker

Fig. 1: Main engine classes (presented in more detail in [17])

which is attached to each symbolic variable. Among the ”leave
methods”—which visit each statement AST in bottom-up
order—contained in the StatementProcessor we extended the
functionality of the IASTDeclaration, IASTDeclSpecifier and
IASTDeclarator methods. BoundsChecker, a buffer overflow
checker which triggers on memory access with (symbolic)
pointers, forms bounds violation satisfiability queries and re-
ports buffer overflows, underflows etc. LoopNonTermChecker
is an infinite loop detection checker [16]. FunctionSpaceStack
used to model the function space stack of symbolic func-
tions. GlobalMemSpace modeling the global memory space
of symbolic variables. RaceChecker is used for detecting race
conditions [15].

The new classes which were added to support the detection
of integer overflows in source code are shaded grey in figure 1.
The IIntegerOverflowObserver (for the sake of brevity not
depicted in figure 1) interface is extended to notify the checker
about integer overflows. The interface is implemented by
IntegerOverflowChecker which is described in detail in sec-
tion IV-A. The IntegerOverflowChecker is used to trigger a bug
report if an integer overflow has been detected. If a satisfiable
path through the analyzed code is detected, then additional
checks are performed inside IntegerOverflowChecker. Further
on, if the resulted SMT-Lib system is still satisfiable then a bug
report is generated indicating that an integer overflow error was
detected.

Due to paper space limitations we will briefly describe the
main features of our engine which are relevant to the integer
overflow checker implementation.

1) Unrestricted context depth: Inter-procedural path-
sensitive analysis with a call string approach [19], [31] is sup-
ported by the symbolic execution engine. The path sensitivity
is based on per function control flow graphs with no in-lining.
The function call context is represented by a program path
leading to its call. The symbolic execution can be constrained
regarding how many times it should run by setting a context
bound (e.g., number of loop iterations) (which in general incurs
accuracy degradation) or unconstrained which can lead to the
possibility of non-termination (e.g., endless loops).

2) Finding program paths: A fixed deterministic thread

scheduling algorithm is used for running the symbolic exe-
cution. The algorithm depends on the thread identity numbers.
Lowest Thread-ID First (LTIF) scheduling is used which is
based on scheduling one of the active threads having the
lowest thread-ID first. The symbolic execution is run with
approximate path coverage which uses Depth-First Search
(DFS). During DFS program states are backtracked and branch
decisions are changed, compare [18]. The loop iteration bound
can be configured either to prune a path until the loop iteration
bound is reached, or to bypass the loop by avoiding the
BranchValidator check.

3) Automatic slicing: In order to keep the equation systems
for satisfiability checks small, only relevant logic equations are
passed to the solver for a certain verification condition. This
corresponds to automatic slicing [32] over the control flow (for
separate analysis of different program paths) and over the data
flow (for verification conditions on a program path).

4) Context sharing for different checkers: With one enu-
meration of satisfiable paths all checks can be performed,
and any specific checkers is allowed to share the contexts
because it is separated from the symbolic path interpretation.
The checkers are allowed through an interface to register for
notifications (triggers) and to query context equations. The
symbolic interpreter is queried whenever triggered in order
to resolve the dependencies of the variables at the triggered
location into the relevant equation system slice and adds the
verification condition formula for a satisfiability query.

5) Logic representation: The SMT-Lib sub-logic of ar-
rays, uninterpreted functions and non-linear integer and real
arithmetic (AUFNIRA) has been chosen for using high-level
logic that can decide automatically. With a target and a
symbolic integer as offset formula, pointers are handled as
symbolic pointer by the interpreter. They are outputted as
logical formulas when dereferenced. Symbolic variables are
created for the fields of composite data structures (e.g., structs
and in case of C++ also classes) and are not translated, but
rather treated like scopes.

6) Path validation: PathValidator is triggered for branch
nodes and uses the same interface as checkers. For all path

decisions up to the current branch the PathValidator queries the
equation SMT-lib linear system slice based on the resolution
of the variable dependencies. Next, it adds a satisfiability
check. The PathValidator throws a PathUnsatException if the
solver answers unsatisfiable, which is caught by the PathEx-
plorer(which reports the un-satisfiable path to the PathValidator
and symbolic execution proceeds with the next path).

7) SMT Solving: The common Eclipse distributions come
with a SAT solver plug-in [20], a SMT solver plug-in is
unfortunately not (yet) available. Therefore the SMT solver
Z3 described in [12] is used. It is wrapped by the SMTSolver
class and started as external process.

8) Eclipse extension: The WorkPoolManager implements
the Codan IChecker interface by pluging in the extension point
”org.eclipse.cdt.codan.core.checkers”. While the available Co-
dan checkers are normally configured to be ”run as you type”
or ”run with build”, the symbolic execution engine is only
”run on demand” with a GUI command, because of higher
complexity and larger run-time of path-sensitive analysis.
The plug-in further uses Codan ControlFlowGraphBuilder to
generate CFGs for parts of an AST which are rooted in a
function definition.

IV. IMPLEMENTATION

A. Integer Overflow Checker Implementation

Our integer overflow checker is notified from inside the
StatementProcessor when assignment statements are encoun-
tered, with a symbolic variable which includes a symbolic
variable name and symbolic type. The Interpreter is notified
by calling ”ps.notifyLimitChecker(ini ssa);”. Next, the notifi-
cation is delegated to the appropriate integer overflow checker
by the Interpreter which checks if there could be an integer
overflow. The slice of equations on which the ”ini ssa” (this
is a symbolic variable used to statically model the run-time
variable x, x := expression) variable depends is queried by
the checker, and adds one satisfiability check. The check is
used to verify if the symbolic variable ”ini ssa” can be greater
than the used integer upper bound value (the upper bound
values are extracted from the C standard library ”limits.h”
file). If the solver answers ”SAT” (satisfiable) to the query,
then the problem is reported. The bug report contains the
problem ID (unique system string), file name where the bug
was detected and line number where the bug is located. In
principle CWE-190—integer underflow (wrap or wrap-around)
and CWE-192—integer coercion error are detectable.

Any number of checkers can be added and share the
symbolic execution contexts. The Codan extension point sup-
ports the addition of new problems and problem detail views.
Detected problems are reported to the marker framework with
their Id, file name, line number and problem description. We
added our path-sensitive integer overflow checker alongside
other existent checkers (RaceCondition checker, InfiniteLoop
checker, etc.).

The grey shaded classes depicted in figure 1 were added,
(≈1400 SLoC). In StatementProcessor (≈700 SLoC) we added
code in the AST traversing leave() methods for dealing with
the new types of C statements contained in the analyzed
programs. IntegerOverflowChecker (105 SLoC) is triggered

for variable assignments present in the analyzed code. It
generates satisfiability queries used to check for violation of
integer overflows and reports an error in case of satisfiability.
IntegersUpperBounds (42 SLoC) was used to extract the actual
values for the integer upper bounds (platform dependent) from
the standard C library file ”limits.h” by taking into account
the current CPU architecture (32bit or 64bit). This makes
our approach platform-independent. TimeWatch (22 SLoC) is
an utility class used for time measurements of our checker.
StatementLogger (38 SLoC) utility class was used to log
statements coming from leave() methods present inside the
StatementProcessor.

The symbolic function models: AbsModel(), SqrtModel()
and RandModel() were added to the Environment inside our
engine (not depicted in figure 1) in order to symbolically
model the mathematical functions: abs(), sqrt() and rand(). The
mathematical function ”abs()” was symbolically remodeled
by using the symbolic function model AbsModel (40 SLoC)
inside our engine. We attached to the symbolic parameter
variable of AbsModel(var symbolic), a SMT-Lib constraint (it
checks the numeric value of the ”abs()” function parameter;
if the parameter value is positive then the value will be
not changed; else if the parameter value is negative then
the ”-” sign will be removed) which was used to model
the mathematical modulus function. As symbolic return of
the function model AbsModel(var symbolic) we used a sym-
bolic copy of ”var symbolic” which contained the previous
attached SMT-Lib constraint. Next, we simulated the execution
of the mathematical ”sqrt” function call inside the function
model SqrtModel, (54 SLoC), by attaching to the symbolic
parameter variable of SqrtModel(param symbolic) the value
of the sqrt operation and assigning this to the symbolic
variable, ”param symbolic”. We implemented our own ”sqrt”
function in code which can deal with big integers based on the
”java.math.BigInteger”. Furthermore, we added the symbolic
function model RandModel(), (29 SLoC), used to statically
model the mathematical rand() function contained in the C
standard library.

The symbolic function models: SocketModel(), Listen-
Model(), ConnectModel(), RecvModel(), AcceptModel() and
BindModel() were used (not presented in figure 1) in or-
der to symbolically model the (f) communication API func-
tions: socket(), listen(), connect(), recv(), accept() and bind()
(note, for sake of brevity parameters are not indicated) de-
clared in ”winsock2.h”, ”windows.h”, ”direct.h”, ”sys/types.h”,
”sys/socket.h”, ”netinet/in.h”, ”arpa/inet.h” and ”unistd.h” The
above mentioned functions were used inside ”if” conditions
containing the C ”break;” statement inside the ”then” branch.
The analyzed C/C++ programs contained ”if” conditions which
were used to check if the return value of the functions calls:
(f) are equal to SOCKET ERROR (”-1”). In case the return
value was equal to ”-1” then ”break;” was called on the
”if” branch—an ”else” branch was not present in the code.
The symbolic return value of these functions would break
the symbolic program execution if it would be equal to the
macro SOCKET ERROR ”-1” or not initialized with a value.
Thus, making the code located after this function calls not
reachable with respect to the program execution paths and
thus, it will not be possible to detect the integer overflow
bug. We attached to the symbolic return variables of the
function models: SocketModel (39 SLoC), ListenModel (39

SLoC), ConnectModel (41 SLoC), RecvModel (42 SLoC),
AcceptModel (41 SLoC), and BindModel, (41SLoC) numeric
values through the usage of SMTLib constraints. Thus, in
this way the part of the code where the bug was located
could be reached. Note, that every numeric value can be
used as symbolic return value of the functions, except ”-1”.
Furthermore, the function models HtonsModel (32 SLoC) and
Inet addrModel (32 SLoC) were added in order to model the
htons() and inet addr() functions. Each symbolical function
model has a constructor method, getName(), getSignature()
and an execute() method which makes the creation and usage
of new function models straight forward.

V. EXPERIMENTS

A. Methodology

We tested our checker with the open source integer over-
flow test case CWE 190 Inger Overflow contained in the
Juliet test suite [33]. The used test case contains 54 baseline
programs with 48 Control Flow Variants (CFV) each resulting
in total of 2592 analyzed programs and 2592 (†) true positives.
Every baseline test case—48 CFV—contains 38 C programs
and 10 C++ programs. First, we generated 26 jUnit test classes
containing 100 jUnit test methods in each of the first 25
classes and respectively 92 jUnit test methods in the 26th class.
Second, we ran each of the generated classes separately—due
to Eclipse run-time limitations it was not possible to put all
2592 jUnit test methods in one class and run everything at
once—by using the Eclipse jUnit testing environment. The
focus of the experiment is to find out the number of false
positives, false negatives, true positives (accuracy) and checker
run-time timings (efficiency). We tested the integer overflow
checker on the Eclipse IDE v. Kepler SR 1, OpenSUSE 13.1
OS, 64bit; 12GB RAM, CPU Q9550 2.83GHz, 64bit.

B. Automated jUnit Test Cases Generation

A script was developed to generate the jUnit test methods
for 2592 analyzed C programs. Our script requires the direc-
tory location—path—as parameter followed by the Juliet test
case name for which the jUnt test cases should be generated
(CWE 190 in our case). The script uses a predefined jUnit
template method and generates 100 jUnit methods per Java
class file. For 2592 programs we obtained 26 jUnit test classes
containing 100 jUnit test methods each and 92 jUnit test
methods in the 26th test class. The dynamic parameters which
are added in each Java source files are: the line numbers where
the bug is located, method names and the class names. These
are automatically generated based on the test cases names
detected in the selected Juliet test case. For the class names
we grouped the test programs in groups of 100 and named
the Java class file as ”CWE ” followed by the name of the
1st test program of the group of 100, followed by underscore
” ” and the last test program name contained in the group.
The first name of the file contained in each test program was
used as names for the generated jUnit test methods. The line
number where the true positive is located was determined by
tokenizing the source files contained in each test program and
by searching for the string (p) ”/* POTENTIAL FLAW */”—
this string was inserted in code by the Juliet test suite creators
in order to mark the true positive and false positive locations.
The script identifies as bug location the next line number after

the string (p) was detected. Multiple appearances of (p) are
filtered out by using several flags and counter variables used
to count the number of appearances and the locations (line
numbers) of (p).

C. Automated Eclipse C/C++ Programs Generation

A second script was created in order to generate 2592
Eclipse projects containing all analyzed C/C++ programs. The
projects generation script uses the directory containing the
Juliet test case (CWE 190 in our case) as parameter in order
to iterate recursively through all folders of the main directory
and generates Eclipse C/C++ projects with the required header
files contained inside. In brief the script uses as templates the
Eclipse C/C++ hidden project files ”.cproject” and ”.project”
which were inserted in each generated project. The script
replaces in each generated project the names of the project
with the names extracted from the names of the source files
contained in each Eclipse test case program. The script creates
the project folder using the same name and puts all the required
files for the current test project inside the folder (needed header
files were also copied inside the folder). The project names and
the appropriate project configurations are written in the hidden
project description files (.cproject and .project). Next, the C
code line ”#define INCLUDEMAIN” is added after the code
line ”#ifdef INCLUDEMAIN” which is contained by default
in each Juliet test case program in order to have a starting
point for the static analysis.

D. Experimental Results

Note, that each number [1, 54] located on the X axis of
figure 2 has two bars associated. Figure 2 depicts for each
of the 54 test cases (each containing 48 CFV—in total 2592
C/C++ programs) the run-time in seconds indicated on the left
Y axis (e.g., the left bar in figure 2 located on the X axis
for #1) and the contribution of each CFV in % depicted on
the right Y axis (e.g., the right bar in figure 2 located on
the X axis for #1). The main contribution in all 54 test cases
has CFV 12 depicted in figure 2 with CFV 12. We observe
that baselines (#12, #24, #27, #36, #48 and #54) depicted in
figure 2 and in table I, first column, have high execution
times—more than 200 seconds—compared to the rest of the
programs. In each of the expensive—have run-time over 200
seconds—test cases CFV 12 has more than 80% contribution
to the checker run-time. Furthermore, we measured the total
execution time with respect to successful triggering, 3638.122
seconds (3666.36 seconds − 28.238 seconds) and the total
execution time without successful triggering, 28.238 seconds
(3666.36 seconds − 3638.122 seconds) and found out that
0,77% (28.238 seconds out of 3638.122 seconds) additional
performance overhead was induced by the programs in which
no execution exception was raised and no bug was found.

Figure 2 was split—depicted with dashed lines ” ” in
figure 2—from left to right having 12 test cases (24 bars)
in each segment for the first 4 segments and 6 test cases
(12 bars) in the last segment located at the far most right in
figure 2. with the goal to depict commonalities between each
of the 5 obtained segments. We observe that the execution
times are rising in each segment to a peak value (segment
1 (#2), segment 2 (#18), segment 3 (#27), segment 4 (#47)
and segment 5 (#54)) and then they abruptly drop, except

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

50

100

150

200

250
T

im
e

[s
]

Baseline testcases

CFV 1 CFV 2 CFV 3 CFV 4 CFV 5 CFV 6 CFV 7 CFV 8 CFV 9 CFV 10 CFV 11 CFV 12 CFV 13 CFV 14 CFV 15 CFV 16 CFV 17 CFV 18 CFV 19 CFV 20 CFV 21 CFV 22 CFV 23 CFV 24

CFV 25 CFV 26 CFV 27 CFV 28 CFV 29 CFV 30 CFV 31 CFV 32 CFV 33 CFV 34 CFV 35 CFV 36 CFV 37 CFV 38 CFV 39 CFV 40 CFV 41 CFV 42 CFV 43 CFV 44 CFV 45 CFV 46 CFV 47 CFV 48

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

C
F

V
 1

2

C
F

V
 1

2

C
F

V
 1

2

C
F

V
 1

2

C
F

V
 1

2

C
F

V
 1

2

Fig. 2: Integer overflow checker run-time results for CWE-190

segment 5 where it increases continuously until it reaches the
peak execution time (#54) for the last baseline test case. By
dividing the whole execution time among all ”the expensive”
execution baselines, (#12, #24, #36, #27 and #48) for the first 4
segments and the #54 baseline test case we observe that those
6 baselines significantly dominated the whole execution time
having execution times of more than 200 seconds. The run-
time for the above mentioned test cases is higher compared
to other baseline test cases because these programs contain
the C standard library function calls ”rand()” and ”sqrt()” in
multiple nested ”if” conditions which make the path conditions
to be more complex than programs which do not contain such
complex nested path conditions. Thus, incurring the additional
computational overhead.

Table I contains the following abbreviations: Baseline Pro-
grams (BP, contains 48 CFV), Source Lines of Code (#SLoC),
Total Bugs Triggered from 48 TP (TBT), Total Execution Time
in seconds (TET [s]), Total Exceptions (TE), Exceptions with
Trigger (0 NO/1 YES) (EwT), Total True Positives percentage
w.r.t. 48 CFV and 37 CFV (48 CFV − 11 CFV, 10 C++
programs and 1 program containing the C ”goto” statement)
(TTP 48%/37%). Table I columns 5 and 8 depict the checker
run-time timings in seconds and true positive percentages for
37/48 CFV, respectively. False positives and false negatives
are not depicted in table I since they were not encountered
during our experiment. Among the triggered bugs we have
100% success rate with respect to true positives. On the
other hand, there were in total 11 (w.r.t. 2592 programs) true
positives detected where we got checker run-time exceptions
but the bugs have still been triggered correctly, table I column
7. However, there were in total 43 (w.r.t. 2592 programs)
programs where the checker successfully parsed the source
code but failed to trigger any bug—table I column 7.

Table II contains the following abbreviation: % of Detected
Bugs w.r.t. to the total number of true positives 2592 (†), (%

TABLE I: Bug detection results for CWE 190
BP #SLoC TBT TET [s] TE EwT TTP 48%/37%
1 fscanf add 5233 37 14.857 11 0 77.08%/100%
2 char fscanf multiply 5539 37 76.356 11 1 77.08%/100%
3 char fscanf square 5309 37 31.213 11 0 77.08%/100%
4 char max add 5236 37 27.566 11 0 77.08%/100%
5 char max multiply 5541 37 32.54 11 0 77.08%/100%
6 char max square 5309 37 29.631 11 0 77.08%/100%
7 char rand add 5236 37 46.118 11 0 77.08%/100%
8 char rand multiply 5541 37 72.947 11 1 77.08%/100%
9 char rand square 5308 37 29.996 11 0 77.08%/100%
10 int64 t fscanf add 5228 29 34.702 16 0 60.45%/78.37%
11 int64 t fscanf multiply 5493 29 69.183 17 1 60.45%/78.37%
12 int64 t fscanf square 5261 29 208.189 16 0 60.45%/78.37%
13 int64 t max add 5188 29 25.117 16 0 60.45%/78.37%
14 int64 t max multiply 5493 29 27.401 16 0 60.45%/78.37%
15 int64 t max square 5261 27 26.483 16 0 43.75%/72.97%
16 int64 t rand add 5188 29 40.497 16 0 60.45%/78.37%
17 int64 t rand multiply 5493 29 76.312 17 1 60.45%/78.37%
18 int64 t rand square 5261 29 121.849 16 0 60.45%/78.37%
19 int connect socket add 12168 36 49.439 12 0 75 %/97.29%
20 int connect socket multiply 12473 36 84.226 12 0 75 %/97.29%
21 int connect socket square 12241 36 44.115 12 0 75 %/97.29%
22 int fgets add 6377 37 45.184 11 0 77.08%/100 %
23 int fgets multiply 6682 36 61.268 12 0 75 %/97.29%
24 int fgets square 6450 37 218.919 11 0 77.08%/100 %
25 int fscanf add 5188 37 37.441 11 0 77.08%/100 %
26 int fscanf multiply 5493 37 84.837 11 1 77.08%/100 %
27 int fscanf square 5261 37 211.418 11 0 77.08%/100%
28 int listen socket add 13736 36 68.908 12 0 75 %/97.29%
29 int listen socket multiply 14041 36 106.101 12 0 75 %/97.29%
30 int listen socket square 13809 36 52.266 12 0 75 %/97.29%
31 int max add 5188 37 27.63 11 0 77.08%/100%
32 int max multiply 5493 37 28.726 11 0 77.08%/100%
33 int max square 5261 34 26.957 11 0 70.83%/91.89%
34 int rand add 5188 37 52.185 11 1 77.08%/100%
35 int rand multiply 5493 37 79.76 11 1 77.08%/100%
36 int rand square 5261 37 222.582 11 0 77.08%/100%
37 short fscanf add 5188 37 41.683 11 0 77.08%/100%
38 short fscanf multiply 5493 37 80.723 11 1 77.08%/100%
39 short fscanf square 5261 37 46.989 11 0 77.08%/100%
40 short max add 5188 37 30.207 11 0 77.08%/100%
41 short max multiply 5493 37 30.051 11 0 77.08%/100%
42 short max square 5261 35 31.186 9 0 72.92%/94.59%
43 short rand add 5188 37 39.372 11 0 77.08%/100%
44 short rand multiply 5493 37 74.297 11 1 77.08%/100%
45 short rand square 5261 37 35.885 11 0 77.08%/100%
46 unsigned int fscanf add 5188 37 42.742 11 0 77.08%/100%
47 unsigned int fscanf multiply 5493 37 85.65 11 0 77.08%/100%
48 unsigned int fscanf square 5261 37 215.401 11 0 77.08%/100%
49 unsigned int max add 5188 37 31.904 11 0 77.08%/100%
50 unsigned int max multiply 5493 37 33.569 11 0 77.08%/100%
51 unsigned int max square 5261 34 37.796 11 1 77.08%/91.89%
52 unsigned int rand add 5188 37 47.831 11 1 77.08%/100%
53 unsigned int rand multiply 5493 36 58.378 10 0 75 %/97.29%
54 unsigned int rand square 5261 37 209.779 11 0 77.08%/100%
- Total 337.573 1908 3666.36 684 1(11) /0(43) 73.61% /95.49%

DB). Table II presents the results of running our checker on
the 2592 programs. Our integer overflow checker triggered in
total 1908 true positives with a success rate of 73.61% DB

TABLE II: Integer overflows bugs triggered

Triggered
/ 48 CFV

of base-
lines

Baseline # # of bugs % DB

37 34
[1, 9], 22, [24, 27], 31,
32, [34, 41], [43, 50],
52, 54

1258 48.53%

36 8
19, 20, 21, 23, 28, 29,
30, 53 288 11.11%

35 1 42 35 1.35%
34 2 33, 51 68 2.62%

29 8
10, 11, 12, 13, 14, 16,
17, 18 232 8.95%

27 1 15 27 1.04%
Total 1908 73.61%

in total as it can be observed in table II columns 4 and 5. In
terms of bug triggering for the 48 CFV for each base line test
case our plug-in triggered at most 37 bugs in a single baseline
which corresponds to a success rate of 48.53% DB while 27
being the lowest triggering number corresponding to 1.04%
DB. The rest of the DB percentages are between 1.35% and
11.11% as depicted in table II, 5th column.

TABLE III: Impact of expensive baseline test cases

Execution Times T [s]
Total time for 12th, 24th, 36th, 48th, 54th and 27th baselines 1286.28
Average time for 12th, 54th and 27th 214.38
Execution time excluding higher value 2380.07
Average execution time excluding higher value 49.58
Average execution time per baseline programs (48 CFV) 67.89
Total execution time 3666.36

Table III shows the impact of expensive baselines test cases
with respect to the total execution time, 3666.36 seconds.
The average execution time per baseline test case is 67.90
seconds but if we exclude those 6 expensive baselines then
the average execution time decreases by almost 20 seconds
to 47.00 seconds. In our experiments we summed up the
times where we had run-time exceptions with the times where
we had no exceptions for all the programs where the bug
was detected at the right place (true positive). Moreover, we
included the execution times of the programs where the code
was successfully parsed but no bug was found (no bug was
triggered at all). We did not sum up the execution times for the
test cases where we had exceptions and no bug was triggered.

TABLE IV: Types of exceptions encountered

Exception ID Error types
101 Jump node, C goto statement
102 java.lang.ClassCastException: org.eclipse.cdt.internal.core.dom.parser

.cpp.CPPFunction cannot be cast to org.eclipse.cdt.internal

.core.dom.parser.c.CFunction
103 java.lang.ClassCastException: org.eclipse.cdt.internal.core.dom.parser

.cpp.CPPTemplateTypeParameter cannot be cast to org.eclipse

.cdt.core.dom.ast.IBasicType
104 java.lang.NullPointerException smtcodan.interpreter.FunctionSpaceStack

.enterFunction(FunctionSpaceStack.java:463)

Table IV presents four types of exceptions that we have
encountered during our experiments. The exceptions appeared
because of current limitations of our framework. Note, that
the ID numbers [101, 104]—used in table IV first column—
were freely chosen to better depict the encountered exceptions.
The exception ”ID 101” was caused by the presence of the C
language ”goto” statement when present in the source code.

Our plug-in checker triggered bugs in almost all programs
except the C++ programs and the programs containing the
”goto” statement. ”ID 102” was encountered because our
framework can not currently deal with C++ functions, only
C functions. ”ID 103” appeared when trying to convert a
C++ template type parameter into an IBasicType which were
not compatible. The exception, ”ID 104”, was encountered
inside the method enterFunction(SymFunctionCall nextCall,
SymFctSignature fsign) which resides in FunctionSpaceStack.
The reason is that we do not create symbolic function sig-
natures for C++ function declarations. This limitations will be
removed by making the CFG builder algorithm aware of object
instantiations and other C++ specific language semantics.

Fig. 3: CWE 190 baseline programs bug reports

Figure 3 presents the bug reports after running our integer
overflow checker on the 54 baseline programs (each contains
one CFV). The circled numbers in figure 3 represent: number
1 depicts the inner structure of the first baseline program,

number 2 contains 54 bug reports for the 54 true positives
contained in the 54 baseline programs (each contains the first
CFV) and number 3 indicates the bug location (file name and
line number) of the first bug report indicated in the Eclipse
”Problems” view. Furthermore, the user has the possibility
to trace back the detected bug—for the programs where bug
reports were generated—to the bug location (file name and line
number) by double-clicking on one of the bug reports depicted
in figure 3 with number 2 .

However, by excluding all C++ programs and those pro-
grams containing the C language ”goto” statement (no bug
reports were generated and contain 11 CFV per baseline test
case) a total of 594 (11 × 54), 22.9% (594 out of 2592)
test programs can be excluded meaning that only 1998 (2592
− 594) programs are actually analyzable by our framework.
Among 1998 programs containing the same number of bugs
(true positives) we successfully detected the bugs in 1908 pro-
grams (true positives), which results in a successful coverage of
95.49% with no false positives. In the rest 90 programs (1998
− 1908), 4.51% from the total analyzable programs (1998),
our checker did not trigger any true or false positives. Thus,
the above results confirm that our approach is accurate and
effective in detecting integer overflows.

E. Threats to Validity

Internal Validity: The experimental results presented in
table I may not support our findings for several reasons.
If our checker incorrectly skips some bugs or misses some
constraints, then it might report false positives (we did not
encounter any in our experiment). For this reason we carefully
extended the StatementProcessor in order to be capable to deal
with the new C language semantics present in CWE 190. If
we misinterpreted the timing results, then the potential total
execution time would not be feasible. We addressed these
factors by testing our tool extensively on the open source
programs contained in CWE 190 which have a known number
of integer overflow bugs. We repeated each run for three times
for each of the analyzed programs in order to be sure that the
obtained results are right.

External Validity: The results cannot be potentially gen-
eralized for C++ programs since the open source programs
contained in CWE 190 were not analyzed due to current
engine limitations. Our engine does not support C++ language
semantics due to the fact that we currently focused on only the
C language. We mitigate this issue by arguing that extending
the StatementProcessor to be capable to translate every kind of
C++ language semantics in SMT-Lib statement is just a matter
of time. On the other hand the current CFG builder algorithm
is not aware of C++ control flow related semantics (e.g., object
instantiation, etc.). The required C++ data types are available in
the Codan API and will be implemented into our CFG builder
algorithm so that the CFG will contain program execution
paths based on specific C++ language control flow semantics.

VI. DISCUSSION AND FUTURE WORK

We presented an integer overflow checker which runs
on C source code and can detect integer overflows with a
true positives rate of 95.49% with no false positives. Our
checker was developed as an Eclipse plug-in and was used
to automatically detect bugs in 2592 programs. We used jUnit
tests in order to assess the accuracy of our integer overflow
checker automatically. Furthermore, we demonstrated that an
integer overflow checker with low false positives rate can be
built by formal modeling of C language semantics which are
related to integer overflows and with function models which
are used to simulate the program environment.

In future we want to extend the CFG building algorithm in
order to support C++ control flow related semantics—object
instantiation, etc. Additionally, we want to implement other
symbolic function models which are relevant for detection of
other types of integer related vulnerabilities.

ACKNOWLEDGMENTS

This research is funded by the German Ministry for Edu-
cation and Research (BMBF) under grant number 01IS13020.

REFERENCES

[1] Aho, A. V. et al. A minimum-distance error-correcting parser for context-
free languages. SIAM Journal of Computation, 1972.

[2] Ashcraft, K. et al. Using programmer-written compiler extensions to
catch security holes. Proceedings of the IEEE S&P’02, 2002.

[3] Barrett, C. et al. The SMT-LIB Standard Version 2.0. Dec., 2010.
[4] Barrett, C. et al. Codan- C/C++ static analysis framework for CDT. In:

EclipseCon, 2011.

[5] Brumley, D. et al. RICH: Automatically protecting against integer-based
vulnerabilities. Proc. of the NDSS’07, 2007.

[6] Ceesay, E. N. et al. Using type qualifiers to analyze untrusted integers
and detecting security flaws in C programs. Proc. of the DIMVA’06, 2006.

[7] Chen, P. et al. Brick: A binary tool for run-time detecting and locating
integer-based vulnerability. Proc. of the ARES’09, 2009.

[8] Chinchani, C. et al. ARCHERR: Runtime environment driven program
safety. Proc. of the ESORICS’04, 2004.

[9] Clarke, E. M. et al. A tool for checking ANSI-C programs. Proc. of the
TACAS’04, 2004.

[10] Coker, Z. et al. Program transformations to fix C integers. Proc. of the
ICSE’13, 2013.

[11] Dietz, W. et al. Understanding integer overflow in C/C++. Proc. of the
ICSE’12, 2012.

[12] de Moura, L. and Bjørner, N. Z3: an efficient SMT solver. Proc. of
the TACAS’08/ETAPS’08, 2008.

[13] Gamma, E. et al. Design Patterns. Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1994.

[14] Godefroid, P. et al. Automated whitebox fuzz testing. Proc. of the
NDSS, 2008.

[15] Ibing, A. Path-Sensitive Race Detection with Partial Order Reduced
Symbolic Execution. Proc. of the WSFMDS’14, 2014.

[16] Ibing, A. et al. A Fixed-Point Algorithm for Automated Static Detection
of Infinite Loops. 16th International Symposium on High Assurance
Systems Engineering, Proc. of the HASE, 2015.

[17] Ibing, A. Symbolic Execution Based Automated Static Bug Detection
for Eclipse CDT, International Journal on Advances in Security, 2015.

[18] Ibing, A. Parallel SMT-constrained symbolic execution for Eclipse
CDT/Codan. Int. Conf. Testing Software and Systems (ICTSS), 2013.

[19] Khedker, U. et al. Data Flow Analysis. CRC Press, 2009.
[20] Le Berre, D. and Parrain, A. The SAT4J library, release 2.2, system

description. JSAT 7, 2010.
[21] Microsoft PREfast analysis tool. Microsoft Corporation.
[22] Mitre Corporation 2011 CWE/SANS Top 25 Most Dangerous Software

Errors. https://cwe.mitre.org/top25/, 2011.
[23] Mitre Corporation CVE-2002-0639: Integer overflow in sshd in

OpenSSH. http://cve.mitre.org/cgi- bin/cvename.cgi?name=CVE-2002-
0639, 2002.

[24] Mitre Corporation CVE-2010-2753: Integer overflow in Mozilla
Firefox, Thunderbird and SeaMonkey. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-2753, 2010.

[25] Mitre Corporation CVE-2002-1490: Integer overflow in NetBSD 1.4.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1490, 2002.

[26] Molnar, X. L. D. et al. Dynamic test generation to find integer bugs
in x86 binary Linux programs. Proc. of the 18th USENIX Security
Symposium, 2009.

[27] Moy, Y. et al. Modular Bug-finding for Integer Overflows in the Large:
Sound, Efficient, Bit-precise Static Analysis. MSR-TR-2009-57, 2009.

[28] Nethercote, N. and Seward, J. Valgrind: a framework for heavyweight
dynamic binary instrumentation. Proc. of the PLDI’07, ACM, 2007.

[29] Parr, T. Language Implementation Patterns. Pragmatic Bookshelf, 2010.
[30] Sarkar, D. et al. Flow-insensitive static analysis for detecting integer

anomalies in programs. SE’07: Proceedings of the 25th conference on
IASTED International Multi-Conference, ACTA Press, 2007.

[31] Sharir, M. and Pnueli, A. Two approaches to interprocedural data flow
analysis. Program Flow Analysis: Theory and Applications, 1981.

[32] Tip, F. A survey of program slicing techniques. Journal of Programming
Languages, 1995.

[33] NIST, Juliet Test Suite v1.2 for C/C++, online:
http://samate.nist.gov/SARD/testsuites/juliet/Juliet Test Suite v1.2 for

C Cpp.zip
[34] Wang, T. et al. Intscope: Automatically detecting integer overflow

vulnerability in x86 binary using symbolic execution. Proc. of the
NDSS’09, 2009.

[35] Wojtczuk, R. UQBTng: A tool capable of automatically finding integer
overflows in Win32 binaries. Chaos Communication Congress, 2005.

	Introduction
	Related Work
	Engine Design and Architecture
	Implementation
	Integer Overflow Checker Implementation

	Experiments
	Methodology
	Automated jUnit Test Cases Generation
	Automated Eclipse C/C++ Programs Generation
	Experimental Results
	Threats to Validity
	Internal Validity
	External Validity

	Discussion and Future Work
	References

